
PDMA-32 Parallel Digital Interface Board
User Guide

A G R E A T E R M E A S U R E O F C O N F I D E N C E

WARRANTY

Hardware

Keithley Instruments, Inc. warrants that, for a period of one (1) year from the date of shipment (3 years for Models 2000, 2001, 2002, 2010 and 2700), the
Keithley Hardware product will be free from defects in materials or workmanship. This warranty will be honored provided the defect has not been caused
by use of the Keithley Hardware not in accordance with the instructions for the product. This warranty shall be null and void upon: (1) any modification of
Keithley Hardware that is made by other than Keithley and not approved in writing by Keithley or (2) operation of the Keithley Hardware outside of the
environmental specifications therefore.

Upon receiving notification of a defect in the Keithley Hardware during the warranty period, Keithley will, at its option, either repair or replace such Keithley Hard-
ware. During the first ninety days of the warranty period, Keithley will, at its option, supply the necessary on site labor to return the product to the condition prior to
the notification of a defect. Failure to notify Keithley of a defect during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Hardware

The portion of the product that is not manufactured by Keithley (Other Hardware) shall not be covered by this warranty, and Keithley shall have no duty of
obligation to enforce any manufacturers' warranties on behalf of the customer. On those other manufacturers’ products that Keithley purchases for resale,
Keithley shall have no duty of obligation to enforce any manufacturers’ warranties on behalf of the customer.

Software

Keithley warrants that for a period of one (1) year from date of shipment, the Keithley produced portion of the software or firmware (Keithley Software) will
conform in all material respects with the published specifications provided such Keithley Software is used on the product for which it is intended and other-
wise in accordance with the instructions therefore. Keithley does not warrant that operation of the Keithley Software will be uninterrupted or error-free and/
or that the Keithley Software will be adequate for the customer's intended application and/or use. This warranty shall be null and void upon any modification
of the Keithley Software that is made by other than Keithley and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity that is covered by this warranty during the warranty period, Keithley will review the
conditions described in such notice. Such notice must state the published specification(s) to which the Keithley Software fails to conform and the manner
in which the Keithley Software fails to conform to such published specification(s) with sufficient specificity to permit Keithley to correct such nonconfor-
mity. If Keithley determines that the Keithley Software does not conform with the published specifications, Keithley will, at its option, provide either the
programming services necessary to correct such nonconformity or develop a program change to bypass such nonconformity in the Keithley Software.
Failure to notify Keithley of a nonconformity during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Software

OEM software that is not produced by Keithley (Other Software) shall not be covered by this warranty, and Keithley shall have no duty or obligation to
enforce any OEM's warranties on behalf of the customer.

Other Items

Keithley warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

Items not Covered under Warranty

This warranty does not apply to fuses, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow
instructions.

Limitation of Warranty

This warranty does not apply to defects resulting from product modification made by Purchaser without Keithley's express written consent, or by misuse
of any product or part.

Disclaimer of Warranties

EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUD-
ING WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEI-
THLEY DISCLAIMS ALL WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND OTHER SOFTWARE.

Limitation of Liability

KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR: (1)
ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER CLAIMED
UNDER CONTRACT, TORT OR ANY OTHER LEGAL THEORY, (2) LOSS OF OR DAMAGE TO THE CUSTOMER'S DATA OR PROGRAM-
MING, OR (3) PENALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION OR INDEMNIFICATION OF THE CUSTOMER OR OTHERS FOR
COSTS, DAMAGES, OR EXPENSES RELATED TO THE GOODS OR SERVICES PROVIDED UNDER THIS WARRANTY.

Keithley Instruments, Inc.

28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168

1-888-KEITHLEY (534-8453) • www.keithley.com

Sales Offices: BELGIUM: Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 00 40 • Fax: 02/363 00 64
CHINA: Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
FINLAND: Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 75 08 10 • Fax: 09-25 10 51 00
FRANCE: 3, allée des Garays • 91127 Palaiseau Cédex • 01-64 53 20 20 • Fax: 01-60 11 77 26
GERMANY: Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
GREAT BRITAIN: Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 0118 929 7500 • Fax: 0118 929 7519
INDIA: Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 • Fax: 91-80-509-1322
ITALY: Viale San Gimignano, 38 • 20146 Milano • 02-48 39 16 01 • Fax: 02-48 30 22 74
JAPAN: New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556
KOREA: 2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838
NETHERLANDS: Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
SWEDEN: c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 169 70 Solna • 08-509 04 679 • Fax: 08-655 26 10
SWITZERLAND: Kriesbachstrasse 4 • 8600 Dübendorf • 01-821 94 44 • Fax: 01-820 30 81
TAIWAN: 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

4/02

User Guide

for the

Keithley MetraByte

PDMA-32

Parallel Digital

Interface

Board

Redision B - January 1992
Copyright Keithley Instruments, Inc. 1988

Part Number: 24847

Warranty Information

AU products manufactured by Keithley Instruments. Inc. Data Acquisition Division
are warranted against defective materids and worksmanship for a period of one
year from the date of delivery to the orlgfnal purchaser. Any product that is found
to be defective within the warranty period will, at the option of the manufacturer,
be repaired or replaced. This wananty does not apply to products damaged by
improper use.

Warning

Eclthlcy Instruments, Inc. Data Acquisition Division assumes no liability
h r damages consequent to the use of this product. This product is not
designed with components of a lcvtl of rcliab€lity suitable for UM in life

support or critical applications.

Disclaimer

Informatlon furnished by Keithley Instruments, Inc. Data Acquisition Division is
believed to be accurate and reliable. However, the Keithley Instruments. Inc. Data
Acquisition Division assumes no responsibility for the use of such information nor
for any inkilngernents of patents or other rights of thfrd parbIes that may result
from its use. No license is granted by implication or otherwise under any patent
rights of the Keithley Instruments. Inc. Data Acquisition Division.

Copyright

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form by any means, electronic, mechanical,
photoreproductive. recording. or otherwise without the express prior written
permission of the Keithley Intsruments, Inc. Data Acquisition Division.

Note:

Keithley MetraJ3ytem is a trademark of Keithley Instruments. Inc. Data
Acquisition Division.

Basicm is a trademark of Datlmouth College.

is a registered trademark of International Business Machines Corporation.

PC. XT, AT, PS/2, and Micm Channel Architecturea are trademarks of Interna-
tional Business Machines Corporation.

Microsoft@ is a registered trademark of Microsoft Corporation.

Turbo @ is a registered trademark of Borland International.

- iv -

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road

Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday – Friday 8:00 a.m. to 5:00 p.m (EST)

Fax: (440) 248-6168

Visit our website at http://www.keithley.com

 Safety Precautions

The following safety precautions should be observed before using
this product and any associated instrumentation. Although some in-
struments and accessories would normally be used with non-haz-
ardous voltages, there are situations where hazardous conditions
may be present.

This product is intended for use by qualified personnel who recog-
nize shock hazards and are familiar with the safety precautions re-
quired to avoid possible injury. Read and follow all installation,
operation, and maintenance information carefully before using the
product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection pro-
vided by the product may be impaired.

The types of product users are:

Responsible body

 is the individual or group responsible for the use
and maintenance of equipment, for ensuring that the equipment is
operated within its specifications and operating limits, and for en-
suring that operators are adequately trained.

Operators

 use the product for its intended function. They must be
trained in electrical safety procedures and proper use of the instru-
ment. They must be protected from electric shock and contact with
hazardous live circuits.

Maintenance personnel

 perform routine procedures on the product
to keep it operating properly, for example, setting the line voltage
or replacing consumable materials. Maintenance procedures are de-
scribed in the manual. The procedures explicitly state if the operator
may perform them. Otherwise, they should be performed only by
service personnel.

Service personnel

 are trained to work on live circuits, and perform
safe installations and repairs of products. Only properly trained ser-
vice personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that
are rated Installation Category I and Installation Category II, as de-
scribed in the International Electrotechnical Commission (IEC)
Standard IEC 60664. Most measurement, control, and data I/O sig-
nals are Installation Category I and must not be directly connected
to mains voltage or to voltage sources with high transient over-volt-
ages. Installation Category II connections require protection for
high transient over-voltages often associated with local AC mains
connections. Assume all measurement, control, and data I/O con-
nections are for connection to Category I sources unless otherwise
marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal
voltage may be present on cable connector jacks or test fixtures. The
American National Standards Institute (ANSI) states that a shock
hazard exists when voltage levels greater than 30V RMS, 42.4V
peak, or 60VDC are present.

A good safety practice is to expect
that hazardous voltage is present in any unknown circuit before
measuring.

Operators of this product must be protected from electric shock at
all times. The responsible body must ensure that operators are pre-
vented access and/or insulated from every connection point. In
some cases, connections must be exposed to potential human con-
tact. Product operators in these circumstances must be trained to
protect themselves from the risk of electric shock. If the circuit is
capable of operating at or above 1000 volts,

no conductive part of
the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits.
They are intended to be used with impedance limited sources.
NEVER connect switching cards directly to AC mains. When con-
necting sources to switching cards, install protective devices to lim-
it fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connect-
ed to a properly grounded power receptacle. Inspect the connecting
cables, test leads, and jumpers for possible wear, cracks, or breaks
before each use.

When installing equipment where access to the main power cord is
restricted, such as rack mounting, a separate main input power dis-
connect device must be provided, in close proximity to the equip-
ment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any
other instruments while power is applied to the circuit under test.
ALWAYS remove power from the entire test system and discharge
any capacitors before: connecting or disconnecting cables or jump-
ers, installing or removing switching cards, or making internal
changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the com-
mon side of the circuit under test or power line (earth) ground. Always
make measurements with dry hands while standing on a dry, insulated
surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its
specifications and operating instructions or the safety of the equip-
ment may be impaired.

Do not exceed the maximum signal levels of the instruments and ac-
cessories, as defined in the specifications and operating informa-
tion, and as shown on the instrument or test fixture panels, or
switching card.

When fuses are used in a product, replace with same type and rating
for continued protection against fire hazard.

Chassis connections must only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is ap-
plied to the device under test. Safe operation requires the use of a
lid interlock.

5/02

If or is present, connect it to safety earth ground using the
wire recommended in the user documentation.

The symbol on an instrument indicates that the user should re-
fer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or mea-
sure 1000 volts or more, including the combined effect of normal
and common mode voltages. Use standard safety precautions to
avoid personal contact with these voltages.

The

WARNING

 heading in a manual explains dangers that might
result in personal injury or death. Always read the associated infor-
mation very carefully before performing the indicated procedure.

The

CAUTION

 heading in a manual explains hazards that could
damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and
all test cables.

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test
leads, and input jacks, must be purchased from Keithley Instru-
ments. Standard fuses, with applicable national safety approvals,
may be used if the rating and type are the same. Other components
that are not safety related may be purchased from other suppliers as
long as they are equivalent to the original component. (Note that se-
lected parts should be purchased only through Keithley Instruments
to maintain accuracy and functionality of the product.) If you are
unsure about the applicability of a replacement component, call a
Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based
cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill
on the instrument. Products that consist of a circuit board with no
case or chassis (e.g., data acquisition board for installation into a
computer) should never require cleaning if handled according to in-
structions. If the board becomes contaminated and operation is af-
fected, the board should be returned to the factory for proper
cleaning/servicing.

!

Contents

CHAPTER 1 : INTRODUCTION

1.1 General Description . 1.1
1.2 Features . 1.1
1.3 Typical Applications. . 1-2
1.4 Accessories . -1-2

CHAPTER 2: INSTALLATION

2.1 General . 2-1
2.2 Backing Up Distribution Software . 2.1
2.3 Base Address Switch . 2.2
2.4 I/O Connector . 2-3
2.5 Board Installation . -2-4

CHAPTER 3: REGISTER STRUCTURES

3.1 I10 Map . -3-1

3.3 DMA Control Register . 3.3
3.4 Interrupt Control Register . -3-4
3.5 8254 Timer . 3.4
3.6 Interrupt Level Register. 3.5
3.7 DMA Level Select Register . 3.6
3.8 Interrupt Status Register . 3.6

3.2 Ports A & 0 . -3-1

CHAPTER 4: PROGRAMMING FOR THE CALL MODES IN BASICA & QUICKBASIC

4.1 The PDMA-32 Call Modes . 4.1
4.2 Programming tn BASICA . 4.1

Loading The Machine Language CALL Routine PDMA32.BIN 4.1
Format Of The CALL Statement . 4.3
Execution Times . Compiled BASIC . 4.4

4.3 Programming In QuickBASIC . 4.4
Loading The Program . 4.4
Declaring The Driver . 4.5
Format Of The Call Statement . 4.5
Making Executable Programs . 4.7

CHAPTER 5: THE MODE CALLS

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.1 1

Overview . 5.1
MODE 0: Initialize The PDMA-32 Driver & Check Hardware 5.1
MODE 1 : Set Up & Perform DMA Transfer . 5.2
MODE 2: Return Status . 5.5
MODE 3: Set Timer Rate . 5.6
MODE 4: Digital Output . 5.7
MODE 5: Digital Input . 5.8
MODE 6: Auxiliary Output . 5.9
MODE 7: Setup & Interrupt Enable . 5-10
MODE 8: Disable Interrupt . 5-12
MODE 9: Allocate Memory For DMA . 5-13

. v -

Contents

5.1 2 MODE 10: Deallocate Memory Segment . 5-34
5.1 3 MODE 11 : Move Data From Source To Destination. 5-14
5.1 4 MODE 12: Disable DMA . 5-35

CHAPTER 6: PROGRAMMABLE INTERVAL TIMER

6.1 The 8254 Programmable Interval Timer . 6-1
6.2 Reading & Loading The Counters. 6-3

CHAPTER 7: APPLICATIONS

7.1 Typical Handshake Connection . 7-1
7.2 Waveform Generation With a D/A Converter. 7-2
7.3 High Speed AID Conversion . 7-3
7.4 Combined N D & DIA Conversion Using Directional Controls 7-4
7.5 Commonly Encountered Problems . 7-6

CHAPTER 8: MAINTENANCE & REPAIR

8.1 Service & Repair. 8-1
8.2 Performing Your Own Repairs . 8-1

APPENDICES

Appendix A Specifications

Appendix B Summary Of Error Codes
Appendix C Understanding DMA
Appendix D Modes 9 & 10: AllocatelDeallocate DMA Buffers
Appendix E Storage Of Integer Variables
Appendix F PDMA-32 PCF

- vi -

CHAPTER 1

INTRODUCTION

1 .I GENERAL DESCRlPTION
The PDMA-32 High Speed Wbit Parallel Digital Interface Card with DMA (Direct Memory Access) is
designed to plug directly into the 16-bit expansion (extended) slots of the IBM PC/XT/AT and
compatible machines.

With internal DMA and interrupt control hardware, the PDMA-32 is capable of sustaining data
transfer rates that are generdly too high for programmed I/O transfers through the main processor.
Actual DMA data transfer rates are computer-dependent, mainly influenced by the clock rate of the
computer's 8237 DMA controllers. Note that the DMA controller is limited to making no more than
65,536 (64K) transfers to/from memory at a time. It is possible to transfer any number of bytes up to
this limit as a single-shot operation or to constantly output or input to a block of memory using the
DMA controller's Auto Initialize Mode.

Using two cascaded 8237 DMA controllers, the PC/XT/AT bus provides seven DMA levels. Levels 0,
1,2, and 3 are hardwareconfigurable to perform byte (8 bit) transfers; Levels 5,6, and 7 are hardware-
configurable to perform word (16 bit) transfers. Level 4 is not available on the I/O bus as it is used
internally to cascade one DMA controller into the other. The PC/XT/AT bus also provides 11
Interrupt Levels. Under software control, the PDMA-32 may perform input or output transfers on any
of these seven DMA Levels and generate interrupts on any of the 11 Interrupt Levels. The only user-
switch setting on the PDMA-32 is the Base I/O Address, which is selectable on any 16bit boundary
between ZOO - 3FOh. Operation of multiple PDMA-32s in the same computer is possible, provided
they are set to different Base Addresses, Interrupt Levels, and DMA levels.

1.2 FEATURES
9 One 16-bit or two 8-bit digital 1 /0 ports, A & B. Data direction of the port(s) may be set to Input or

Output under software controi. The port(s) are addressable as normal 1/0 locations using
programmed 8- or &bit I/O transfer instructions. Or using the PC/ATs internal 8237 DMA
controllers, data may be directly transferred at high speed to/from the ports from/to memory. In
Output Mode, output data may be read back from the port(s). DMA transfers may be bytes (8 bit)
using DMA Level 0,1,2, or 3 through the A Port only, or they may be words (16 bit) using the A
and B ports combined with DMA Level 5,6, or 7. The A DIRECTION and B DIRECTION outputs
provide information on the current direction of the ports, which can simplify interface to devices
capable of bidirectional data transfer. In addition, three uncommitted auxiliary outputs (AUX1-
AUX3) are available from the DMA and Interrupt Control Registers and can be used for control
and handshake functions. When used for byte DMA transfers, the B Port is free for use as a
standard (non-DMA) port for Programmed I/O. A bit in the DMA Control Register selects
whether the PDMA-32 operates as an 8- or 16-bit peripheral for 1/0 operations on the A and B
ports regardless of the DMA operating mode (byte or word). For example, you may be set for
DMA word transfers, but do normal 1/0 reads and writes as byte operations to each half of the 16-
bit port. This is a useful feature since many high-level languages (BASIC, for example) provide
byte I/O but do not support word I/O. If your programming language includes word 1 /0
instructions, the PDMA-32 provides the capability to read/write the whole 16-bit port in a single
instruction.

1 - 1

PDMA-32 USER GUIDE

DMA transfers may be initiated by an external signal (XFER REQUEST) or by an internal
programmable timer. The internal timer consists of a lOMHz crystal oxillator divided through
two sections of an 8254 counter. The Timer can produce dock rates ranging from 25MHz to
0.0023Hz (about 8 pulses/hr.). The choice of external transfer request or internal clock is
programmable. On receipt of a positive edge on the XFER REQUEST input, the XFER
ACKNOWLEDGE output goes low and remains low until completion of the word/byte DMA
transfer. This takes on average about 2.5 microseconds with 8237 DMA Controllers operating with
a 3MHz clock and, allowing for worst-case DMA service latency, does not exceed 511s. The
operating DMA Level is selected by writing a binary code to the DMA Level Select Register. You
are required to initialize the 8237s DMA Controllers on the PC system board before commencing
transfers (this code is provided in the driver).

An Interrupt Channel is also provided. Software control allows you to select operation on any of
the 11 PC/AT Bus Interrupt Levels (3,4,5,6,7,9,10,11,12,14, or 15) to choose between a psitive-
or negative-edge external interrupt on the INTERRUFT input pin, a periodic interrupt from the
PDMA-32's internal timer, or a terminal interrupt generated from the 8237 DMA Controllers.

All digital I/O connections are made through a standard 37-pin, D-type, male connector that
projects through the rear mounting plate.

The PDMA-32 Distribution Software includes a callable assembly language driver for interpreted and
compiled BASIC (including QuickBASIC) as well as example BASIC programs. This driver includes
fully commented source code (PDMA32.ASM) and is modularized for simple modification or for
adaptation to other languages. The driver includes all the set-up and installation software for the 8237
DMA and 8259 Interrupt Controllers plus an example Interrupt Handler.

1.3 TYPICAL APPLICATIONS
Interface to high-speed, digital peripherals.

Arbitrary waveform generation with an external D/A converter.

High-speed A/D conversion with an external A/D converter.

High-speed digital stimulus for testing and control.

Fast block transfer of data between computers.

Interrupt- or DMA-driven background data transfers.

High sink-current TTL digital 1/0 (24mA sink current).

Data line monitoring.

1.4 ACCESSORIES
Accessories are optional and not essential for operation. They include the SFC-37 mating solder cup
37-pin D connector and C-1800 cable/STA-U combination for users requiring screw connections. Full
details of these accessories are available from the manufacturer.

1 - 2

CHAPTER 2

INSTALLATION

This chapter contains instructions for the installing the PDMA-32 in an IBM PC/XT/AT and
compatible models. The chapter begins with procedures for unpacking and inspection. It then
describes how to make a back-up copy of the Distribution Software. Descriptions of the Base Address
Switch and the 1/0 Connector and procedures for installing the PDMA-32 are also given.

2.1 UNPACKING & INSPECTING
1. Unpack the board down to its anti-static packaging. If possible, retain the outer packing material

2. Check to be sure you have received every item on the packing list has been shipped. Report any

3. Holding wrapped PDMA-32 Board in one hand, place your other hand firmly on a metal portion

in case the board must be returned to the factory for repair.

missing items to the manufacturer.

of the system chassis (which must be grounded). (This procedure drains any static electricity from
your body, preventing damage from such a charge to the board.)

4. Carefully remove the board from its antistatic wrapping.

5. Inspect the board and any other components for shipping damage. If damage is detected, return
the board to the manufacturer.

You are now ready to install your PDMA-32. Set the Base Address Switch if necessary (see Section
2.4). Then, install the board as described in section 2.5.

2.2 BACKING UP THE DISTRIBUTION SOFMlARE
As soon as possible, make a working copy of your Distribution Software. You may put the working
copy on diskettes or on the PC Hard Drive. In either case, making a working copy allows you to store
your original software in a safe place as a backup.

To make a working copy of your Distribution Software, you will use the Dos COPY or DISKCOPY
function according to one of the instructions in the foDowing two subsections.

To Copy Distribution Software To Another Diskette

In either of these instructions, the source diskette will be the diskette containing your Distribution
Software; the target diskette will be the diskette you will copy to. Before you start, be sure to have
one (or rnore,as needed) formatted diskettes on hand to serve as target diskettes.

First, place your Distribution Software diskette in your Pc's A Drive and log to that drive by typing
A: . Then, use one of the following instructions to copy the diskette files.

2 - 1

PDMA-32 USER GUIDE

If your PC has just one diskette drive (Drive A), type COPY - B : (in a S i q @ + d r k K,
Drive A also serves as Drive 8) and follow the instructions on the screen.

If you prefer to use the DOS DISKCOPY function, instead of COPY, you will type DISKCOPY
A: A: and follow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY.COM, in your DOS files.

above) and follow the instructions on the screen.
If your PC has two diskette drives (Drive A and Drive B), type COPY * . * B: (the same as

If you prefer to use the DOS DISKCOPY €unction, instead of COPY, you will type DISKCOPY
A: B: and follow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY.COM, in your Dos files.

To Copy Distribution Software To The PC Hard Drive
Before copying Distribution Software to a hard drive, make a directory on the hard drive to contain
the files. While the directory name is your choice, the following instructions use PDMA32 .

1. After making a directory named PDMA32, place your Distribution Software diskette in your Pc's

2. Then, type COPY * . * pat h\PDMA32 , where path is the drive designation and DOS path (if

A Drive and log to that drive by typing A: .

needed) to the PDMA32 directory.

When you finish copying your Distribution Software, store it in a safe place (away from heat,
humidly, and dust) for possible future use as a backup.

2.3 BASE ADDRESS SWITCH

The PDMA-32 Base Address Switch (the only
board switch) is a &position DIP switch set at the
factory for 300h (see Figure 2-1). Normally, the
preset address of 300h will be suitable. However,
if 300h presents a conflict, select a new address on
a 16-bit boundary anywhere in the in the PC-AT
1 / 0 space. Refer to the table below for acceptable
areas of selection.

ADDRESS ADDRESS LINE VALUES
DECIWL HEX

112 XXI
251 1ca
121 63
I, a

t i i t i t

Figure 2-1. Base Address Switch

In selecting a Base Address, bear in mind that the PDMA-32 must be assigned a unique Base Address
within the range of 200 to 3FFh (512 to 1023 Decimal). Use the following table as an aid to selecting
this address.

2 - 2

CHAPTER 2: INSTALLATION

PCAT 110 Address Space

HEX RANGE USAGE HEX RANGE USAGE

OOO-OOF
020421
040-043
06@064
070471
08W8F

KO-ODF
OFO-OFF
1rn-lFF
2#20F
238-23B
23C-23F
278-27F

OAO-OA1

2BO-2BF
2CO-2CF

DMA Controller #1
Interrupt Controller #1
Timer
Controller (Keyboard)
Real-time Clock & NMI Mask Reg.
DMA Page Register
Interrupt ConmLler #2
DMA Controller #2
Coprocessor
Hard Disk
Game I/O
ReselVed
Reserved
Parallel Printer LPT2:
EGA
EGA

2DO-2DF
2m2E7
2E8-2EF
2FS-zFF
300-3OF
3 10-31F
320-32F
378-37F
380-38F
3A0-3AF
3BO-3BB
3BC-3BF
3co-3cF
3W-3DF
3E8-3EF
3F0-3F7
3m-3FF

EGA
GPIB
Serial Port
serial Port corn:
Prototype Card

Hard Disk
Parallel printer LFTI:
SDLC
SDLC
Monochrome Display
Parallel printer
EGA
CGA
Serial Port
Floppy Disk Controller
Serial Port COM1:

Prototype card

The PDMA-32 Distribution Software includes an I n s f d l program to assist you in setting the Base
Address Switch. To run this program, proceed as follows:

1. Log to the directory containing the Distribution Software. Then, type INSTALL followed by

2. The program will respond with the prompt DESIRED BASE ADDRESS ---- > ? . Typea

<Enter>.

Base Address in either decimal or hexadecimal form (a hexadecimal number must be preceded by
&H, such as &H300). The computer will display the corresponding Base Address switch settings.
If the entry is unacceptable, the computer will display an explanatory statement and a request for
another entry.

2.4 I/O CONNECTOR
A standard 37-pin, D-type male connector is used for all
I/O. The mating connector is a standard, 37-pin D-type
female such as an ITT/Cannon #DC-37S for soldered
connections. Insulation displacement (flat cable) types are
readily available (for example, Amp #745242-1). Other
manufacturers make equivalent parts. If you wish to
access connections with screw connectors, use the
manufacturer's STA-U Universal %rew Connector Board.
The I/O Connector and its signal conductor functions are
described in Figure 2-2 and the table of functions that
follow.

Figure 2-2. Main I/O Connector

AQ

A 7

80

86

XFER ACK. OUT

XFER REQ. IN
INTERRUPT IN

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

4

1
O

'

4

2

A DIR. OUT
GND

GND

GND

GND

GND

GND

GND

B DIR. OUT

GND

GND

AUX. 3 OUT
AUX. 2 OUT

AUX. 1 OUT
TIMER GATE IN

TIMER OUT

I%> COMPUTER
POWER FROM

2 - 3

PDMA-32 USER GUIDE

I/O Slgnal Functions

SIGNAL NAME FUNCTION

INTERRUPT IN

XFER. REQ. IN

XFER. ACK. OUT

BO -B7

A0 - A7

+5v

TIMER OUT

TIMER GATE IN

AUX1-3

GND

B DIR OUT

A DIR OUT

This is a positive or negative edge Iriggered interrupt input The slope of the trigger
edge is selected by bit DO of the interrupt control register.

A positive edge on this input initiates a DMA transfer with DMA enabled and D3 of
the DMA control register = 0.

On ieceipt of a XFER. REQ. h e XFER. ACK. goes low. After the 8237 DMA has
finished the byte or word transfer, XFER. ACK. returns high indicating that valid
data is on the port(s) in output mode, or that data has been transferred in input
mode.

Port B data (inputloutput)

Port A data (input/output)

This is the +5v logic supply from the computer. Provided that you are sure you can
avoid short circuits, overloads and application of external voltages (i.e. any type
of abuse which might damage the computer), it may be used to power external
peripherals. Be sure to observe avaihble power h i t s , in any case do not exceed 2
amps due to connector limitations - see Technical Reference Manual.

This is a positive pulse or square wave output from the timer.

When low, this input inhibits (or holds) external and internal p u k s from the timer.
The TIMER GATE has an internal IOK pull-up resistor to +5v, if not used this
input can be left disconnected.

These are general purpose control output lines corresponding to spare bits in the
DMA and Interrupt control registers.

Logic and power return ground.

Port B direction (output)
0 = Port B input
1 = Port B output

Port A direction (output)
0 = Port A input
1 = Port A output

2.5 BOARD INSTALLATION
This section provides general instructions for installing the PDMA-32 Board. For more detailed
information regarding installation of peripheral boards, consult the documentation provided with
your computer.

2 - 4

CHAPTER 2: INSTALLATION

WARNING
DO NOT ATTEMPT TO INSERT OR REMOVE ANY ADAPTER
BOARD WITH THE COMPUTER POWER ON! THIS COULD
CAUSE DAMAGE TO YOUR COMPUTER!

To install the PDMA-32 Board,

1. Turn off power to the PC and to all attached options.

2. Unplug the power cords of all attached options from the electrical outlets. Make a note of where
all the cables and cords are attached to the rear of the system unit and disconnect.

3. Remove the cover of the PC. To do this, first remove the five cover mounting screws on the rear
panel of the computer. Then, slide the cover of the computer about 3/4 of the way forward. TiIt
the cover upwards to remove.

4. Choose an available option slot. Loosen and remove the screw at the top of the blank adapter
plate. Then slide the plate up and out to remove.

5. Hold the PDMA-32 in one hand. With the other hand, touch any metallic part of the PC/AT
cabinet. This will safely discharge any static electricity which has built-up in your body.

6. Set the Base Address Switch as described in section 2.3.

7. Align the gold edge connector with the edge socket and the back adapter place with the adapter
plate screw. Gently press the board downward into the socket. Reinstall the adapter plate screw.

8. Replace the computer's cover. Tilt the cover up and slide it onto the system's base, making sure
the front of the cover is under the rail along the front of the frame. Install the mounting screws.

9. Plug in a11 cords and cables. Turn the power to the computer back on.

...

2 - 5

CHAPTER 3

REGISTER STRUCTURES

At the lowest level, the PDMA-32 is programmable via 1/0 (Input/Output) instructions. In BASIC,
these are the WOC) and OUT X,U functions. Assembly Language and most other high- level
languages have equivalent instructions (for example, IN AL,DX and OUT DX,AL in Assembly). Use
of these functions usually involves formatting data and dealing with absolute 1/0 addresses.
Although not demanding, this type of programming requires that you have a hull understanding of
the devices, data format, and architecture of the PDMA-32.

3.1 I/O MAP
PDMA-32 boards use 16 consecutive addresses starting at the Base Address in the computer's 1/0
space, as shown in the following table.

ADDRESS FUNCTION TYPE

Base Address4
Base Address+l
Base Address+2
Base Address+3
Base Address4
Base Address+S
Base Address4
Base Addressn

Base Address+8
Base Address+9
Base Address+A
Base Address+B

A Port
B Port
DMA Control
Interrupt Control
Counter 0
Counter 1
Counter 2
Counter Control
counter stabls
DMA Level
Interrupt LeveI
Interrupt Status

-F Not used

Note that addresses Base Address +4 thru +7 correspond to the 8254 timer.

3.2 PORTS A & B
Ports A and B are the main digital 1/0 ports. They are each 8-bits wide and can be used individually
or combined into one 16-bit port for both Programmed 1 /0 and DMA I/O. Each port is associated
with a data direction output (A DIR and 6 DIR). Bits DO and D1 of the DMA Control Register select
the data directions, and on power-up are always reset to the Input Mode. The following operating
modes, selected by Bit D2 of the DMA Control Register and the level programed in the DMA Level
Register, are possible:

3 - 1

PDMA-32 USER GUIDE

Base+O

Base+1

BIT D2 DMA LEVEL PORT I/O A & B DIRECTION

0-Byte 0 - 3 (Byte) Byte for I/O A & B Independent
Byte for DMA

1 - Word 0 - 3 (Byte) word for rn A Controls Both Ports
Byte (PA) for DMA B Irrelevant

0 - Byte 5 - 7 (Word) Byte for I/O A Controls Both Ports
Word for DMA B Irrelevant

1 - word 5 - 7 (Word) word for I/o A Controls Both Ports
Word for DMA B IrreIevant

A7 A6 A5 A4 A3 A2 A1 A0

87 B6 85 I34 83 8 2 B1 BO

Byte-wide (%bit) DMA operations may be made only through Port A. In this case, Port B is available
and independent of Port A for input or output using Programmed I/O.

Base+O

Word-wide (ldbit) DMA operations are made through both Ports A and 6 combined. In Word Mode,
Port A provides the Least Significant Byte, and Port B provides the Most Sigruficant Byte of data. Of
necessity, the data direction of both ports has to be identical if a Word Transfer DMA Level 5 - 7 is
selected and the B direction, set by bit D1 of the DMA Control Register, is ignored both for DMA and
Programed I/O.

For normal Programmed (non-DMA) I/O, you have a choice of accessing the ports as two separate
byte-wide ports and using byte-oriented I/O instructions (for example, IN AL,DX or OUT DX,AL (in
Assembly) or I"(-) or OUT -, - in BASIC) to 1 /0 addresses BASE or BASE +1 or configuring
them as a single 16-bit word-wide port (A and B ports combined) and using Word 1/0 instructions
(IN AX,DX or OUT DX,AX in Assembly)) to 1 / 0 address BASE, The possible combinations are
delineated in the table above. Note that many high-level languages such as BASIC do not have Word
1/0 instructions, so either use the PDMA32.BIN driver or set the ports for byte-oriented access and
use BASIC's INPs and OUTS.

87 B6 B5 84 B3 82 B1 BO

A7

For 16 bit operations, the data format is

A6 A5 A4 A3 A2 A1 A0

3-2

CHAPTER 3: REGISTER STRUCTURES

- 0

NOTES:

I

1. Both ports are automatically set up in the input direction on power-up of the computer (when
hardware reset bus line is active). Their data and configuration will not be changed by a soft boot
(pressing < Ctrl> + < Alt > + c Del > 1.

2. In Input Mode, each line of Port A presents one 74s load to the driving source and each line of
Port B presents two 74LS loads to the source. In Output Mode, outputs of both ports will sink
24mA and are 7 4 s and standard Tn-compatible. For driving CMOS inputs, 330 Ohm pull-up
resistors to +5V are recommended.

3. In Cutput Mode, data can be read back from either port. This data corresponds to the actual data
on the output pins and may not correspond to data written if an output line is shorted or faulty.

3.3 DMA CONTROL REGISTER
The DMA ControI Register is an 8-bit read/write register located at 1/0 address BASE +2. The DMA
Control Register bits have the following functions:

L D3

I
AUX 1

D2 D1 DO

1 = ou tpu t
B DIR: 0 = Input, 1 = Output

Byte/Word: 0 = Byte, 1 = Word

1 = I n t . 8254 Timer

I 1
T r a n s f e r Source: 0 = Ext. (XFER REQ),

DMA Enable: 0 = Disabled, 1 = Enabled

NOTES:

1. The DMA Control Register is cleared on power-up (reset) of the computer, thus disabling DMA

2. If Word Mode is selected for regular 1/0 (D2 = 11, then €3 Direction Bit D1 is ignored. Both ports

3. To avoid spurious transfers, the DMA ENABLE bit should be set before enabling the Mask

4. The desired DMA level is selected before enabling DMA by writing it to the DMA Level Select

5. When DMA ENABLE = 0, the associated DMA I/O bus signal is tristated and may be shared by

4. The AUXl and AUX2 Bits correspond to unused bits. For convenience, these have been brought

7. Sit D6 wiIl always read back as 0 regardless of what is written to it.

and setting Ports A & B as inputs.

operate as a single, &bit port with the direction set by A Direction Bit DO.

Register of the 8237 DMA Controller.

Register at 1/0 address BASE +8 - before enabling DMA.

other devices.

out to provide additional outputs on the rear connector.

3-3

PDMA-32 USER GUIDE

3.4 INTERRUPT CONTROL REGISTER
The Interrupt Control Register is an %bit read/write register located at I/O address BASE +3. T h i s
register's bits have the following functions:

D2 D1 DO

1 Slope: 0 = f Edge,
1 = - Edge

00 = External Input
01 = 8237 Terminal
10 = 8254 Timer
11 = 8231 Terminal

T
AUX3

INT Enable: 0 = Disabled. 1 = Enabled

NOTES

1. The Interrupt Control Register is cleared on power-up (reset) of the computer, thus disabling

2. The interrupt Ievel is selected by writing the required level to the Interrupt Level Select Register at

3. The INT ENABLE Bit should be set before enabling the 8259 Interrupt Controller Mask Register to

4. When INT ENABLE = 0, the associated 1/0 bus interrupt line is tistated and available for use by

5. The AUX3 bit corresponds to an unused bit. For convenience, it has been brought out to provide

6. Bits D4 through D6 will always read back as 0 regardless of what is written to them*

interrupts.

1/0 address BASE +9 - before enabling interrupts.

avoid generation of spurious interrupts.

other devices.

an additional output on the rear connector.

CCUCh I
GATE 0 I COUNTER 0

CLOCK IN
CLOCK 0 16-BIT DOWN COUNTER

I : 74LS04

,

l i lk l 4 "

GATE 1 COUNTER 1
1 OK

15v * CLOCK IN - OUT
CLOCK 1 16-BIT DOWN COUNTER , I TO + 5v 1

GATE 2
1 OK 1 I INTERNAL CIRCUITS

N.C. CLOCK IN
CLOCK 2 16-BIT DOWN COUNTER

Diagram of 8254 connection in PDMA-32.

3 - 4

CHAPTER 3: REGISTER STRUCTURES

NAME:

1/0 locations BASE +4 thru +7 correspond to the 8254 Timer. A full description of the 8254
capabilities and programming is provided in the Intel 8254 data sheet and a partial description,
adequate for programming, is supplied in Chapter 6. Its use in the PDMA-32 is purely for periodic
timing pulse generation and its connection is shown below. Note that Counter 2 is not hardware
accessible to you, although it may be loaded and read for timing purposes.

x X X X 13 12 tl 10

3.6 INTERRUPT LEVEL REGISTER
This is a read/write register at 1/0 address BASE +9. The state of the bits is arbitrary after power up.
Note that the Interrupt Control register is cleared on power up (hardware reset).

Interrupt priorities highest-to-lowest are 9,10,11,12,14,15,3,4,5,6, and 7. There is no Interrupt
Level 2 on the PC/AT; it is redirected through Interrupt Level 9. According to the IBM Technical
Reference Manual for the PC/AT, Levels 9,10,11,12, and 15 are Reserved (potentially free for user
applications).

3-5

PDMA-32 USER GUIDE

NAME:

3.7 DMA LEVEL SELECT REGISTER
This is a read/write register at I/O BASE +8. The state of the bits is arbitrary after power-up.

x X X X X L2 L1 LO

NAME:

Note that DMA Level 2 may be selected, but if used it will normally interfere with the operation of the
floppy diskette. Writing 04h to I/O port 3F2h will temporarily disable the DREQZ from the floppy
disk adapter. You may then operate the PDMA-32 on Level 2. When you finish, disable the PDMA-32
DMA and DOS will automatically reenable the floppy diskette adapter on the first disk access.
Obviously, if you are operating on Level 2, avoid any concurrent diskette and PDMA-32 activity with
both devices enabled.

IRQ 0 0 0 0 0 0 0

3.8 INTERRUPT STATUS REGISTER
This is a read only register at BASE + O M . It returns a single bit corresponding to the state of the
PDMA-32’s internal intempt request. Reading the Interrupt Status Register will clear the interrupt
request and re-enable interrupts from the PDMA-32; this should normally be done at some point in
your interrupt handler and prior to setting up and enabling the 8259 interrupt controlIer(s),

...
3-6

CHAPTER 4

PROGRAMMING FOR THE CALL MODES
IN BASICA & QUICKBASIC

4.1 THE PDMA-32 CALL MODES
The PDMA32.BIN driver (Distribution Software) supports 13 CALL modes (numbered 0 - 12). Each
mode performs a spechc operation. This chapter describes considerations for using these modes in
either BASICA or QuickBASIC.

For convenience, a list of the 13 CALL modes follows.

MODE DESCRIPTION

MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9
MODE 10
MODE 11
MODE 12

Initialize the PDMA-32,
Setup and Perform DMA Transfer.
Return Status.
Set Timer.
Digital Output.
Digital Input
Auxiliary Output.
Interrupt Enable.
Interrupt Disable.
Allocate Memory for DMA.
Deallocate Memory Segment
Move Data from Source to Destination.
Disable DMA.

Each mode is fully described in Chapter 5.

4.2 PROGRAMMING IN BASICA

Loading The Machine Language CALL Routine PDMA32.BIN
You may choose from two methods for loading the PDMA32.BIN driver. The option you choose will
depend on the amount of RAM memory installed in your machine. For most applications, Method 1
will suffice; this method requires a minimum of 256K RAM. If your machine does not have this much
RAM, use Method 2.

Method 1

This method calls for loading the driver outside of the BASIC workspace using the BLOAD
command. You must initialIy select a segment of memory in which at least 6 KBytes is clear at the
beginning and does not conflict with any other program or data area. For example, you could choose
&H2800 which is at 160K. Then proceed as follows:

4 - 1

PDMA-32 USER GUIDE

-10 DEF SEG = &€I6000 'Sets up load segment
xxx20 BLaAD VDMn32.BINn,0'Loads at 2800:OOOO
-30 PDMA32 = 0
xxx40 DIM D % (1 6)

xxxxx DEB SEG = &a6000
: x x q y CALL PDMn32 (MD%, D%(O), PUG%)
xxxzz etc.

...

An example of this method in given in the DMAl.BAS file, in your Distribution Software.

Method 2
This method involves loading the driver within the BASIC workspace using the B L W command.
You must initially select a segment of memory in which at least 6 KBytes is clear at the beginning and
does not conflict with any other program or data area. (If you do interfere with another program's use
of memory, the CALL routine will not work and your PC will most IikeIy "hang-up". If this happens,
reboot your computer.) To determine a safe loading area, proceed as follows.

1. Determine the size of the BASIC workspace. By nature of its design, the maximum memory
segment that BASIC is able to use is 64K. To determine the size of the workspace, at the DOS
prompt type ElASIC (A) .
The computer will respond with something like

BASIC
The IBM Personal Computer B a s i c
Version D1.10 Copyright IBM Corp. 1981, 1982
61807 B y t e s Free

The exact number of "Bytes Free" varies with the version of BASIC(A1 and DOS but is usually
greater than 6OKB. A number less than 6OK indicates that your Pc's memory is already heavily
used. If this is true, you will have to load the CALL routine by further contraction of the BASIC
workspace and by loading the routine at the end of the newly defined workspace.

You will need to 6K (6144 byte) space for the PDMA32.BIN driver. To do this, first determine how
much memory BASIC is able to use. Then, load BASIC(A) from DOS with the command
BASIC(A) .
Note the number of Bytes Free in BASIC's greeting message. Now, use a SYSTEM command to
return to DOS and reload BASIC(A1 with the optional /M parameter, as follows:

BASIC (A) /M:WS

Try setting the WS (workspace) parameter to 3oooO or goo00 and then note the number of Bytes
Free. Continue this process, increasing the workspace parameter until the Bytes Free number is
reduced by at least 6144 bytes. Then, you can either load BASIC(A1 by specifying this workspace
or include a CLEAR command right at the beginning of your program, as follows:

XXxlO CLEAR, ws

2. Identify the segment BASIC occupies in memory. In all versions of Microsoft derived BASIC, you
can determine the segment from the contents of absolute memory locations &H511 and &H510.
These locations hold the current BASIC segment, which we can call SG. Determine SG as follows:
-20 DEF SEG = 0
'define current segment = 0000 before reading
'absolute addresses 0000:0510 h 0000:0511

4 - 2

CHAPTER 4 PROGRAMMING FOR THE CALL MODES IN BASICA & QUICKBASIC

xxr30 SG = 256*PEEX(hH511) + PEEK(hH510)
The segment address at which the CALL routine can be loaded wilI be at the end of the working
space. For example,
xxx40 SG = WS/16 + SG 'remember, segment addresses

'are on 16-byte boundaries

Load the routine as follows:
-50 DEF SEG = SG
-60 BLOAD "PDMA32.BIN", 0 'loads routine at SG: 0000

A BLOAD must be used as you are loading a binary (machine language) program. Once loaded,
the CALL can be entered as many times as needed in the program after initializing the call
parameters MD%, D%, FLAG%. Enter these parameters prior to the CALL sequence as follows:
xur70 DEF SEG = SG
-80 PDMA32 = 0
xxx90 CALL PDMA32 (MD%, D%(O) , FLAG%)

Note that PDMA32 is a variable that specifies the memory offset of the starting address of the
CALL routine from the current segment, as defined in the most recent preceding DEF SEG
statement.

Notes

a. PDMA32 is the offset (actually zero) from the current segment, as defined by the last DEF
SEG statement (DEF SEG tells your BASIC interpreter where the CALL routine is located).
Avoid inadvertently redefining the current segment somewhere in a program before entering
the CALL. It is good practice to immediately precede the CALL statement by the appropriate
DEF SEG statement (the same one you preceded your BLOAD with).

b. CLEAR sets working space from the bottom of the BASIC working area up, whereas you
must set aside space for your subroutine from the top of memory down. Any attempt to
CLEAR more space than is actually available will load your routine over the end of the
BASIC program, data space, and stack and will hang up the computer. Be especially careful
this does not happen if you are memory-limited and later load BASIC with DEBUG or some
coresident program without declaring a corresponding reduction in workspace (WS) in your
CLEAR statement.

Format Of The Call Statement
If you are inexperienced with CALL statements, this section will help you to understand their use.
Prior to entering the CALL, the DEF SEG = SG statement sets the segment address where the
CALL subroutine is located. The CALL statement for the PDMA32 driver is of the format

xxx CALL PDMA32 (MI%, D%(O) , FLAG%)

where

PDMA32 = The address offset from the current segment of memory as defined in the last DEF
SEG statement.

MD% = Call parameter representing the Mode Number.

D% = Call parameter(s1 representing the Data VariabIe(s1.

FLAG% = Call parameter representing Errors.

4 - 3

PDMA-32 USER GUIDE

In executing the CALL, the addresses of the variables (pointers) are passed in the sequence written to
BASIC's stack. The CALL routine unloads these pointers from the stack and uses them to locate the
variables in BASIC's data space so data can be exchanged with them. There are several important
rules to remember when using the CALL statement:

1. The CALL parameters must always be written in the correct order. The subroutine does not
recognize the names of the Variables, just their locations. For example, if the line xxxxx CALL
PDMA32 (D%(O), MD%, FLAG%) is used, the CALL routine would interpret D%(O) as the
MODE number, MD% as the data, etc.

2. All parameters must be defined as integer type variabIes. The CALL does not perform any error
checking on the variable type. If you use the wrong variable tvpe, the CALL function will not
perform correctly.

3. Do not perform any arithmetic functions within the parameter list brackets of the CALL
statement. Forexample, CALL PD-2 (MD% + 2, D%(O) 8 , FLAG%) isillegaland
will produce a syntax error.

4. Do not use constants for any of the parameters. For example, this is illegal: CALL PD-2 (7 ,
2, FLAG%) .

5. You may assign any name you wish to the variables.

6. Declare all variables before executing the CALL. If you do not, the simple variables will be
declared by default on execution but array variables cannot be dimensioned by default and must
be dimensioned before the CALL to pass data correctly if used as a CALL parameter. Most
MODES of the CALL routine require multiple items of data to be passed in an array. For this
reason, D%/O(Ol is specified as the data variable so that the CALL routine can locate the whole
array from the position of its initial element.

Likewise, any of the other CALL parameters may be integer array variables if required, and you
can name any number of different integer data arrays for output and input. It is permissible to
dimension arrays with more elements than will be used by the CALL. Unused elements will be
unchanged and for example could be used for tagging data with time, date, or other information.

Execution Times - Compiled BASIC
The execution times of most modes of the PDMA-32 are limited by the software. Additionally, other
operations that process data in your program may also delay your overall throughput. One solution
which would improve the speed of your program is to use compiled BASIC or QuickBASIC.

4.3 PROGRAMMING IN QUICKBASIC
This section contains information for users wishing to write data acquisition programs in QuickBASIC
(QB). In addition to the information provided in this section, you may want to consult the
QuickBASIC example programs in the Distribution Software.

Loading The Program
A QuickBASIC program will have to make caIls to an external driver/library. Your Distribution
Software contains the folIowing linkable driver/libraries:

4 - 4

CHAPTER 4 PROGRAMMING FOR THE CALL MODES IN 3ASlCA & QUICKBASIC

P32QB45.QLB Load this Quick Library into your QuickBASIC Integrated Environment Version
4.5 or lower.

P32QBX.QLB Load this Quick Library into your QuickBASIC Extended Environment Version 7.0

P32QB45.LIB LINK this library to your stand-alone QuickBASIC program,

Load the P32QB45.QLB Quick Library into the QB environment from the Dos command line using
the /L switch, as follows: QB /L P32QB45.

To load an application program (such as EXG3.BAS) along with the Quick Library, you load the Quick
Library and EXG3.BAS together by typing QB /L P32-45 EXG3.

Use P32QBX.QLB in an identical manner when using the QuickBASIC Extended Enviroment (QBX)
Version 7.0.

Declaring The Driver
Before you use the driver/library, you must declare the CALL label to make it known to your
application. Make this declaration by inserting the following at the beginning of your program:

DECLRRE SUB QBPD-2 (MODE%, BYVAL dumny%, FLAG%)

where QBPDMA.32 is the common entry point to the driver/library for driver modes.

NOTE: All subroutine DECLARES in your program MUST be before any $DYNAMIC arrays are
allocated. $DYNAMIC data is allocated space in the FAR heap, outside the default data
segment. All arrays used for data acquisition must be declared as $DYNAMIC;
QuickBASIC assumes $STATIC data (Default data segment) unless otherwise specified.

Format Of The Call Statement
Unlike BASICA, the first and third parameters in QB are passed as variables while the second
parameter is passed as a pointer. This arrangement is necessary because the second parameter must
represent the offset of the command integer array. To pass the actual offset, use the VARPTR
function as follows:

CALL PDMA32 (MD%, VAReTR(D8 (0)) , FLAG%)

where

MD%

D%(N)

is the Mode number.

is the parameter array, and FLAG% returns detected errors.

4 - 5

PDMA-32 USER GUIDE

The VARPTR function returns the address of DX(O1, which you pass as a value to the driver. The
driver uses that value as a pointer to the first element of our command integer array D%.

D% is declared as a $STATIC array since it must reside in the default data segemnet in order to be
relative to the QB data segment, as required by the driver. Since D% is passed to and returned by the
external driver, declare this parameter as an inter-module global variable, as follows:

. _ .
DIM D % (1 6)
COMMON SHARED D% ()
...

The COMMON makes this variable visible between modules, and the SWARED statement at the
module level makes it known globally in this module. After ddaring all your $STATIC variable, you
may declare any large $DYNAMIC arrays for DMA data acquisition.

&I $DYNAMIC
DIM DMA% (10000)
...

NOTE: All $DYNAMIC data declaration must occur AFTER all COMMON and DECLARE
statements in your program. If you get the Q B error COMMON and DECLARE must
preceed aIl execufable statements, double check the order of DECLARES COMMONS and
$DYNAMIC declarations.

See Section 2.5 ($STATIC and $DYNAMIC Arrays) and (COMMON statement) in the QuickBASIC
Language Reference Manual for a detailed discussion of the factors that determine array types.

To summarize, your program header should look as follows:

DECLARE SUB QBPDMA32 (MODE$, BYVAL dunmy%, FLAG%)

DIM D % (1 6)
COMMON SHARED D% 0 I Parameter Array for mode CALLS

. . .

REM $DYNAMIC
DIM DMA3 (1 0 0 0 0)
. . .

1

DMA array in FAR Heap

Refer to the QB example programs (Distribution Software) for more detail. Note that the address of
the array DMA%O is a “FAR” address (32-bitsland may be determined by using the built-in operators
VARSEG and VARPTR. Your PDMA-32 driver/library (.LIB or .QLB) is designed to accept 32-bit
addresses, allowing you to avoid specifying absolute addresses as in BASIC.

D % (l) = 5000E

Instead, when passing FAR pointers to QB, specify -1 where you normally specify the “memory
segment” and supply the FAR pointer‘s segment and offset in unused D%O parameter array
elements. The following is an example of how this is accomplished for the DMA Mode 6. Assume
that the array DMA% (100 00) is previously declared in the $DYNAMIC area, as described above.

4 - 6

CHAPTER 4 PROGRAMMING FOR THE CALL MODES IN BASICA & QUICKBASIC

D%(O) = 10000 'Sample count
D % (l) = -1 'flag to l o o k for Seg:ofs below!
D % (2) = 1 ' internal clock
D S (3) = 0 ' s i n g l e cycle
D % (4) = VARPTR(DMA%(O)) 'Offset of DMA%(O)
D % (5) = VARsEG(DMA%(O)) 'Segment of D m % (O)
...

A final note on arrays. If you wish to erase and redimension an array during program execution, it
should be declared as $DYNAMIC. The REDIM statement can now change the size but not the
dimensional structure. The ERASE statement is not necessary. Note that if a pagewrap occurs, you
should use MODE 23 to transfer the data.

Making Executable Programs
There are two ways to create a stand-alone Quickbsic program that is executable from the DOS
command line:

1. From within the QB (QBX) environment.

2. From the DOS command line.

When making a stand-aIone executable, you need the P32QB45.LIB driver/library.

From within the QB Environment

To make an executable from the QB Environment, use the following sequence:

1. Invoke the environment, as follows:
QB /L P32QB45 QBDEMO ' for QB up Ver 4 . 5

or
Q3X /L P32QEX QBDEMO for QB Ver 7.0

2. Select the Run menu item.

3. Select the Make EXE File ... from the Run menu.

4. Select Produce: (*D) Stand-Alone EXE File.

5. Select the < Make EXE and Exit > option.

This sequence produces a standalone QBDEMO.EXE that does not require run-time support. As an
alternative, you may use the following procedure:

1. Select the Run menu item.

2. Select the Make EXE File ... from the Run menu.

3. Select Produce: (*D) EXE Requiring BRUN45.EXE.

4. Select the <Make EXE and Exit> option.

4 - 7

PDMA-32 USER GUIDE

This sequence produces a program QBDEMO-EXE that requires the run-time support program
BRUN45.EXE. To run either type of executable program, type: QBDEaao .

From the DOS Command Line

To compile QB programs from the DOS command line, use the following command sequence from
Dos:

BC /e /Q QBDEMO.BAS;
LINK QBDEMOl,,P32QB4S.LIB;

The /o option causes references to the BCOM45.LIB library to be placed in the object module, so the
library response need not be given in the LINK line. This sequence will produce a standalone
executable.

As an alternative, type

3C QBDEM0.BAS;
LINK QBDEMO, I P32QB45. LIB;

The absence of the 10 option in the compiler line causes references to the BKW45.LTB library to be
placed in the object module, so the library response need not be given in the LINK line. This sequence
produces an executable program that requires BRUN45.EXE to be in a subdirectory named \BIN or in
the current directory at the time the program is executed,

Note that the Compiler and Linker expect to find the necessary executables (ECEXE, LINKEXE, etc..)
in a subdirectory named \BIN, and to find Libraries in the directory named by the environment
variable *LIB* (*SET LIB=* in your AUT0EXEC.BAT.)

To run either type of executable program, type QBDEMO .

The Software Driver CALL Label

You must declare the CALL label to make it known to your application; make this declaration by
inserting the following at the beginning of your program:

DECLARE SUB QBPD-2 (MD%, BYVAL PARAMS%, FLAG%)

Note that all subroutine DECLARES in your program MUST be made before any $DYNAMIC arrays
are allocated. $DYNAMIC data is data that is allocated space in the FAR heap, outside the default
data segment. All arrays used for data acquisition must be declared as $DYNAMIC; QuickBasic
assumes $STATIC data (Default data segment) unless otherwise specified.

The &I/ Parameters
Declare the mode call parameter array D%(10) as follows:

DIM D% (9)
COMMON SHARED D% ()

4 - 8

CHAPTER 4 PROGRAMMING FOR THE CALL MODES IN BASICA & QUICKBASIC

By making the array COMMON SHARED, other modules and subroutines can use it.

For example, to initialize your PDMA-32 board, use MODE 0 as follows:

180 lk% = 0
190 FLAG% = 0 'declare error variable
200 D%(O) = bH300 'Card BASE ADDRESS
210 D%(l) = 5 'DMA LEVEL
220 D % (2) = 7 'INTERRUPT LEVEL
230 D % (3) = 1 'WORD MODE
240 CALL QBPDMA32 (MD%, VARPTR(D% (0)) , FLAG%)
250 IF FLAG3 <> 0 THEN PRINT "MODE 0 Error # "; FLAG% : STOP

'initialize no&

Linking To The Driver Interface M u l e

The QuickBASIC Interface consists three separate Modules:

P32QB45.QLB Use when you load the QuickBASIC Enviroment Version 4.5 and you plan to run
your program from within the Environment (no EXE envolved here). Use the /L switch to load
this Quick Library into Quick3ASIC, as follows:

QB /L P32QB45 <your-program>

P32QBX.QLB
Extended Environment Version 7,O (QBX). Use the /L switch to load this Quick Library into
QuickBASIC, as follows:

This is identical to P32QB45.QLB except that it is designed for QuickBASIC

QBX /L P32QBX <your-program>

P32QM5,LIB Link to this library when you want to make a standalone EXE program from your
QuickBASIC (4.5) source. To create such a program, use BC and LINK the QuickBASIC compiler
and linker as follows:

EC <your-program,. bas /o;
LINK <your-program>,,,P32QB45.LIB;

P32QBX.LIB Link to this library when you want to make a stand-alone EXE program from your
QuickBASIC (7.0) source. To create such a program, use BC and LINK the QuickBASIC compiler
and linker as follows:

3C <your-program>.bas /o;
LINK <your-prograuO,,,P32QBX.LIB;

NOTE: AII $DYNAMIC data declaration must occur after all COMMON and DECLARE
statements in your program. If you get the QB error COMMON and DECLARE must
preceed all execufablesfafemenfs , double check the order of all DELCARE, COMMON, and
$DYNAMIC declarations.

4 - 9

CHAPTER 5

THE MODE CALLS

5.1 OVERVIEW
This chapter details each of the 13 PDMA-32 MODE CALLS. The PDMA32.BIN driver (Distribution
Software) supports these modes (numbered 0 - 12), and each perfom a specific operation.

The particulars for each mode include a description, data required for entry, data to be expected upon
exit, and a typical example of a program entry.

A list of the 13 MODE CALLS is as follows:

MODE DESCRIPTION

MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9
MODE 10
MODE 11
MODE 12

Initialize the PDMA-32 Driver & Check Hardware.
Setup and Perform DMA Transfer.
Return Status of DMA Transfer.
Set Timer Rate.
Digital Output.
Digital Input.
Auxiliary Output.
Set Up and Enable Intempt.
Disable Interrupt.
Allocate Memory for DMA.
Deallocate Memory Segment.
Move Data from Source to Destination.
Disable DMA.

5.2 MODE 0: INITIALIZE THE PDMA-32 DRIVER & CHECK
HARDWARE

Description:
MODE 0 initializes the driver and PDMA-32 hardware and must be executed before using any of the
other MODEs. Initializing checks and stores the PDMA-32’s Base 1 / 0 Address, the desired Interrupt
Level for interrupts, and the desired DMA Level. This MODE also determines whether the PDMA-
32s A and B Ports will appear as a 14- or 8-bit peripheral for normal I/O.

The Base 1/0 Address is checked to be in the legal range of 256 - 1008 (100h - 3FOh) for the PC/AT. If
not an Error Exit #3 will occur. If OK, the Base I/O Address is stored for use by other MODEs on re-
entry to the CALL. A short read/write test is made to some of the PDMA-32 internal register; it is
sufficient to detect the presence or absence of the board at the specified 1/0 Address. If no board is
detected (absent board, wrong Base 1/0 Address), Error #4 (Hardware Error) is returned.

5 - 1

PDMA-32 USER GUIDE

If initialization is successful, any other MODE may be selected on subsequent CALLS. Trying to
select any other MODE before performing initializing MODE 0 will give rise to error # 1 . If an
invalid DMA Level number or interrupt level is selected, Errors #5 or #6 are returned.

Enffy Data:

D%(O) =
D%U) =
D%(2) =
D%(3) =

D%(4) thru D%(6) =

Base 1/0 Address of PDMA-32, range 10@3FOh.
Selected DMA Level; 0 - 3 and 5 - 7 are valid.
Selected Interrupt Level; 3 - 7,9 - 12, and 14 - 15 are valid.
Selects port MODE; 0 = Byte I/O, 1 = Word I/O.
Not used, value irrelevant.

Exif Data:

D%(O) thru D%(6) = Unchanged.
FLAG% = 0 if OK; otherwise:

1 if MODE Number c 0 or > 12.
3 if Base Address c lOOh or > 3FOh.
4 if hardware error, no board, incorrect 1/0 address.
5 if DMA Level illegal.
8 if Interrupt Level illegal.
12 if Byte/Word MODE specifier D%(3) not 0 or 1.

Programming Example:

A typical start for a program initializing sequence wouId be as follows:

100 DEF SEG = hH4000 'segment to load driver
110 BLOAD "PDMA32 .BIN", 0 'load it a t zero offset
120 PDMA = 0 'declare variables
130 m% = 0 'select initialization
140 DIM D%(6) 'declare data array
150 FfiAG% = 0
160 D%(O) = 6H300 'Base Address = 300 hex.
170 D B (1) = 5 'DMA Level 5
180 D%(2) = 9 'Interrupt Level 9
190 D % (3) = 1 'word MODE - 16 bit 1/0
2 0 0 CALL P D M 3 2 (MD%, D% (0) , FLAG%) 'initialize
210 IF FLAG%<>[I THEW PmNT "Error in initializing # ";FLAG%:STOP
220 'continue program

5.3 MODE 1 : SET UP & PERFORM DMA TRANSFER
Description:

MODE 1 sets up both the 8237 DMA Controller and the PDMA-32 for an input or output DMA
transfer using Bytes or Words. Using Bytes, the DMA hardware works through Port A, while Port 3
remains open for programmed I/O, and MODE 1 will not disturb its configuration. In Word Mode,
DMA uses both Ports A and B; Port A transfers the Less Significant Byte and Port B the More
Significant.

The DMA setup, which is performed by the driver, involves the following steps:

5-2

CHAPTER 5: THE MODE CALLS

1. Disable any DMA transfer already in progress.

2. Check data for valid ranges.

3. Check for a page wraparound problem, which can occur if for example you want to transfer
40,000 bytes starting at an offset of 32,000 in a page. The &bit DMA Page Register selects 1 of 16
pages of 64 Kbytes out of the memory. The K / A T system board hardware is not capable of
incrementing the Page Register from the 8237 DMA Controllers when the end of a page is reached.
Instead, DMA will continue at the beginning of the same page and may overwrite program or
data memory. This condition of page wraparound is checked before enabling the DMA
operation.

4. The next step is to work out the correct control byte for the PDMA-32 DMA Control Register.

5. The MODE, Initial Address, and Byte Count Registers of the appropriate DMA Ievel of the 8237s

6. The timer is halted prior to enabling the DMA channel so that the first transfer always occurs a
fixed delay (corresponding to the timer pulse rate) after setup.

7. The 8237s Mask Register is enabled, opening the DMA channel.

8. The timer is brought up to its correct speed.

are then loaded.

The setup procedure is followed by a return to your program. The DMA transfer may continue as the
rest of the following program executes. If you wish to determine the progress of a transfer, use MODE
2.

Entry Data:
D%(O) =
D%(l) = Value irrelevant.
D%(2) =
D%(3) =
D%(4) =
D%(5) =
D%(6) =

Number of transfers in bytes or words.

Direction; 0 = input 1 = output.
Autorecycle On/Off; 0 = Off, 1 = On.
Transfer Clock Source; 0 = External, 1 = Timer.
Transfer segment for DMA buffer.
Transfer offset for DMA buffer,

Exit Data:
D%(O) thru D%(6) = Unchanged.

FLAG% = 0 if OK; otherwise:
1 if MODE Number < 0 or > 12.
6 DMA Page Wraparound Error.
7 DMA direction, D%(2), not 0 or 1.
11 Autorecycle, D%(3), not 0 or 1.
17 Transfer Clock Source, D%(4), not 0 or 1.

Programming Example:
A typical program entry preceding MODE 1 might read as follows:

5 - 3

PDMA-32 USER GUIDE

210 MD% = 1
220 D % (O) = 1000
230 D % (l) = 1
240 D % (2) = 1
250 D % (3) = 1
260 D % (4) = 1
270 D % (5) = &H5000
280 D % (6) = 0
290 CALL PD-2 (MD%, D % (o) , FLAG%)
300 IF FLAG%<>O THEN PRINT "Error in
310 'continue program

'select MODE Nlrmber
'transfer 1000 words
'word transfer MODE
'output data on ports A & B
'autorecycle on continuous output
'clock data out with timer
'DUA buffer memory segment
'DMA buffer memory offset
'execute MODE 1

MODE 1, # ";FLAG%:STOP

A few points of explanation on the preceding Programming Example:

D%(O)

D%(2)

D%(3)

D%(4)

D%(5)

D%(6)

always sets the number of transfers whether they are Bytes or Words as selected by
D%(l). If D%(O) = 0, then a full page (65,536) transfer will be performed.

sets the port(s.1 direction for input or output. If the board has been set up (MODE 0
initialization) to operate on any of DMA Levels 0 - 3 (Byte Levels), only Port A is used.
Otherwise, Word MODE DMA Levels 5 - 7 use both Ports A and B, combined.

controls whether the DMA Controller is set in the Auto-Initialize MODE.

controls selection of the DMA transfer request pulse source. If D%(4) = 0, the external
XFER. REQ. on Pin 2 of the rear connector is used. If D%(4) = 1, then transfer requests
are generated by the internal timer. The timer rate can be set using MODE 3.

controls selection of the DMA buffer segment in memory. If D%(5) = &HFFFF, then
BASIC's data segment will be used (see caution below).

controls the offset of the buffer area within the data segment set by D%(5).

DMA DIRECTLY TO/FROM A BASIC INTEGER ARRAY

If you wish to transfer data directly to/from an integer array, proceed as follows (performing DMA
directly to/from an array is a potentially dangerous procedure, read warning at end):

2 1 0 MD% = 1
220 N = 360
2 3 0 DIM ARRAY%(N)
2 4 0 D%(O) = N+1
250 D % (1) = 1
260 D % (2) = 1
270 D%(3) = 1
2 8 0 D % (4) = 1
2 9 0 D % (5) = LHFFFF
300 D % (6) = VARPTR(ARRAY%(O))
310 CALL PDMA32 (MD%, D%(O), FLAG%)
320 IF FLAG%<>O THEN PRINT " E r r o r in
330 'continue program

'select MODE Number
'number of elements in array

'transfer N+l w o r d s
'must be word transfer MODE
'output data on p o a s A & B
'auto-recycle on
'clock data out with timer
'array segnnmt = BASIC's
'array offset
'execute MODE 1

MODE 1, # ";FLAG%:STOP

5 - 4

CHAPTER 5: THE MODE CALLS

warning !
Since BASIC dynamically allocates variable storage and locates arrays
above simple variables, adding a new simple variable after line 310 will
unavoidably relocate ARRAY%(*). The DMA hardware will not be
aware of this and will carry on outputting data from the locations it got
in lines 290 & 300 leading to strange effects especially on input of data.
You must use a structured programming method of predeclaring all
variables at the start of your program to safely perform DMA directly
in/out of BASIC arrays. If in doubt, use a buffer area external to BASIC.

5.4 MODE 2: RETURN STATUS
Description:

MODE 2 returns information about the status of DMA and interrupt operations. For DMA, D%(3)
indicates whether a DMA transfer set up by MODE 1 is still active. It also returns the number of
transfers (Bytes or Words) requested in MODE 1 in D%(l) and the number transferred so far in D%(O).
If the DMA Controller is operating in nonauto-initialize mode and the transfer is complete (number
transferred = number requested), D%(3) returns 0 to indicate DMA inactive. It is also possible for the
hardware to generate a terminal interrupt to indicate the end of a DMA transfer, although this MODE
does not utilize this capability. MODE 2 also returns the current data directions of Ports A and B and
the current interrupt status whether active or done.

Entry Data:

D%(O) thru D%(6) =

Exit Data:

D%(O) =
D%(l) =
D%(2)=
D%(3) =
D%(4)=
D%(5)=
D%(6)=

FLAG% =

Value Irrelevant.

Number of Bytes/Words transferred.
Number of Byte/Word transfer requested.
Auto-InitiaIize On/Off; 1 = On, 0 =Off.
DMA Active/Finished; 1 = Active, 0 = Finished.
Port A Data Direction; 0 = Input, 1 = Output.
Port B Data Direction; 0 = Input, 1 = Output.
Interrupt Status; 0 = Disabled, 1 = Enabled.
0 if OK; otherwise: 1 if MODE Number < 0 or > 12.

Programming Example:
A typical programming sequence using MODE 2 is as follows:

310 MD% = 2 'select MODE Number
320 CALL PDMA32 (MD%, D % (O) , FLAG%) 'execute MODE 2
330 IF FLAG%<>O TWEN PRINT "Error in MODE 2 , # ";FLAG%:STOP
340 IF D B (3) = 1 THEN GOT0 320 'wait till DMA finished

5 - 5

PDMA-32 USER GUIDE

5.5 MODE 3: SET TIMER RATE
Descripiion:

MODE 3 sets the division ratio for the Timer. The Timer output consists of two Whit Down Counters
driven in cascade from a 10.000MHz 0.01% precision crystal clock. Initializing (MODE 0) sets these
counters to operate in 8254 MODE 2 (see Chapter 6) ur Rate Generator Mode, which produces a single
pulse on t e n n i ~ l count of Counter 1. MODE 0 also initially loads these counters to 65,535 (FFFFh) so
that the initialized output rate is about 1 pulse every seven minutes. Immediately after initialization,
the counter output is guaranteed to be low for seven minutes, allowing plenty of time for set up of an
external device.

This MODE reloads the counters to any other desired rate up to a maximum of 2.5MHz. The output
pulse rate is:

Rate = (lO,OOO,O0O)/(D%(O) D%(l)) pulseskec.

PermissibIe values for D%(O) and/or D%(1) are 2 thru 65,535. Values of 0 and 1 are not legal.

It is aIso possible to operate the counters in square-wave mode (8254 MODE 3), but this requires direct
programming to the 8254 control port, as this driver does not support changing the initialized
configuration. Counting may also be enabled and disabled with the TIMER GATE Input (Pin 3).
When held low, this input inhibits counting; when open or held high, counting is allowed to proceed.

Entry Rafa:

D%(O) = Counter 0 Divider.
D%(1) = Counter 1 Divider.

D%(2) thru D%(6) = Not used.

Exit Data:

D%(O) thru D%(6) = Unchanged.
FLAG% = 0 if OK; otherwise: 1 if MODE Number < 0 or > 12.

Programming Example:
A typical timer setup to output 1 KHz would be as follows:

3 4 0 MD% = 3 'select MODE N u u b e r
350 D%(O) = 1000 'counter 0 divisor
360 D % (l) = 10 'counter 1 divisor
360 CALL PDMn32 (MD%, D%(O) , FLAG%) 'execute MODE 3
370 IF FLAG%<>O THEN PRINT "Error in MODE 3, # ";FLAG%:STOP
380 'continue program

Note: The output pulse width from Counter 1 depends on the period of the clock it receives
from Counter 0. In this example, Counter 0 outputs a frequency of lO,OOO/lOOO = 1OKHz
for an output pulse width will be 100 microseconds. Since Counter 1 divides by 10 the

5-6

CHAPTER 5: THE MODE CALLS

ultimate timer rate is X H z . If D%(O) = 100 and D%(1) = 100, the Timer Rate would still
be lKHz, but the pulse width would be 10 microseconds.

5.6 MODE 4: DIGITAL OUTPUT
Description:

MODE 4 performs digital output as a programmed transfer either through the A Port or the B Port or
in the case of Word transfers, through both the A and B Ports. Note this MODE does not perform
DMA; use MODE 1 instead. The operation performed by this MODE is equivalent to a direct write to
the port address using OUT addr, data in most languages. Once written, data is latched on the output
port and can be read back using MODE 5 or INP(addr). The operating MODE of the ports
(Word/Byte) is set by variable D%(3) in initializing MODE 0. If Word MODE has been selected, then
the PDMA-32 appears as a ldbit peripheral for digital 1 /0 and data is written in a single instruction
from Ports A and B combined. If Byte I/O Mode has been selected, Ports A and B are written
separately as Byte-wide ports, and the PDMA-32 appears as a Byteoriented peripheral to the PC/AT
bus. Note it is possible to be doing DMA in Word Mode and still perform Byte-wide 1/0 operations
on the A and B ports.

The output port(s) are selected byD%(l). Byte (8 bit) transfers may be made either through the A Port
or the B Port. If the PDMA-32 is operating in Word I/O Mode, the value of D%(U is irrelevant. Word
(16 bit) transfers are made throughboth the A and B Ports with the A Fort outputting the Least
Significant Byte and the B port outputting the Most Significant.

The data direction of the ports is checked initially by reading the PDMA-32' DMA Control Register. If
it differs from the desired output arrangement, the data directions are set accordingly. On power-up,
all ports are reset to the input condition.

A check on valid data is performed on Byte transfers only and Error Code #13 is returned if out of
range and the output operation abandoned.

Enfry Data:
D%(O) =
D%(l) =

D%(2) thru D%(6) =

Output Data; Rrange 0 to 255 if Byte, -32768 to 32767 if Word.
Output Port(s); Value Irrelevant in Word I/O Mode; 0 = Port A

Not used.
(Byte), 1 = Port B (Byte).

Exit Data:
D%(O) thru D%(6) = Unchanged.

FLAG% = 0 if OK; otherwise:
1 if MODE Number < 0 or z 12.
13 if data D%(O) is out of range, < 0 or > 255 for byte xfers.
14 if port configuration D%(1) data < 0 or > 1.

Programming Example:

The following example outputs all 1's (65,535) a5 a word on Ports A and 8. Note that we wish to
output unsigned data, whereas integers store signed data (see Appendix E for further explanation).

5 - 7

PDMA-32 USER GUIDE

The examples assume we have performed initialization, MODE 0, with D%(3) = I (word MODE).
Initially we start with the data in a real variable D and sign correct it for output in an integer in Line
400:

380 MD% = 4 ' s e l ec t MODE Number
390 D = 65535 'data to output
400 IF D > 32767 THEN D = D - 65536 'sign correct
410 D%(O) = D 'output data
420 CALL PDMA32 (MD%, D % (O) , FLAG%) 'execute MODE 4
430 I F FLAG%<>O THEN PRINT " E r r o r in MODE 4, # ";FLAG%:STOP
440 'continue program

The following code would output a travelling pattern of 1 on Port B assuming Byte I/O Mode had
been selected in initializing MODE 0 (D%(3) = 0):

380 MD% = 4 'select MODE Number
390 D % (1) = 1 ' s e l ec t port B
400 FOR I% = 0 TO 7

430 CALL PDMA32 (MD%, D % (O) , FLAG%) 'execute MODE 4
440 IF FLAG%<>O THEN PRINT " E r r o r i n MODE 4, # ";FLAG%:STOP
450 NEXT I%
460 'continue program

410 D%(O) = 2'1% 'output data

5.7 MODE 5: DIGITAL INPUT
Description:
MODE 5 reads Byte (8 bit) data from Port A or Port B, as specified by D%(l) or Word (16 bit) data
from Ports A and B. In the case of Word data reads, Port A provides the Least Significant Byte, and
Port B the Most Significant. Data is always returned in D%(O). The operating MODE of the ports
(Word/Byte) is set by variable D%(3) in initializing MODE 0. If Word MODE has been selected, then
the PDMA-32 appears as a 16-bit peripheral for digital I/O, and data is read in a single instruction
from Ports A and B combined, If Byte 1/0 MODE has been selected then Ports A and €3 are read
separately as Byte-wide ports, and the FDMA-32 appears as a Byteoriented peripheral to the PC/AT
bus. Note it is possible to be doing DMA in Word MODE and still perform Bytewide 1/0 operations
on the A and B ports. If Word MODE has been selected on initialization, the value of D%(1) is
irrelevant.

Note that the ports maybe in input or output mode on entry to MODE 5. If D%(2) is 0, MODE 5 will
not interfere with the port configuration i.e. will read back data from a port set in output MODE by
MODE 4 and leave it set in output MODE. If however you want to alter the configuration and make
the port an input port only, D%(2) should be set to 1. An addressed port will then the be set in input
MODE prior to reading it and will remain in input MODE afterwards until changed by an output
operation using MODE 4. Ports are automatically configured as inputs by the computer on power up
reset.

Entry Data:

D%(O) = Value irrelevant.
D%(l) = Input Port(s); Value irrelevant if in Word 1/0 Mode; 0 = Port A (Byte)

1 = Port B (Byte).

5 - 8

CHAPTER 5: THE MODE CALLS

D%(O) =
D%(1) thru D%(6) =

FLAG% =

Change Configuration; 0 = No Change, 1 = Change Addressed Port to

Not Used.
Input Mode.

Data from Port.
Unchanged.
0 if OK; otherwise:
1 if MODE Number < 0 or > 2
14 if port configuration (Dl) data €0 or rl.
15 if configuration change data (DZ) not 0 or 1.

Programming Example:

Set Port A to input and read (assumes PUMA-32 initialized in Byte 1 /0 MODE), as follows:

460 MD% = 5 'select MODE Number
470 D % (l) = 0 'select Port A
480 D % (2) = 1 'change Port A t o input config.
490 CALL PDMA32 (MD%, D % (O) , FLAG%) 'execute MODE 5
500 I F FLAG%<>O TEEN PRINT " E r r o r in MODE 5, # ";PLAG%:STOP
510 PRINT " D a t a from P o r t A = ";D%(O)
520 continue p r o g r a m

Set Port B to output, output data, and read it back, as follows:

380 MD% = 4
390 D%(O) = 99 : X% = D%(O)
400 D % (l) = 1
410 CALL PDMA32 (MD%, D%(O) , FLAG%)
420 I F FLAG%<>O THEN PRINT "Error in
430 MD% = 5
440 DB(1) = 1
450 D%(2) = 0
460 CALL PDMA32 (MD%, D%(O), FLAG%)
470 I F FLAG%<>O THEN PRINT "Error in
480 I F X% <> D%(O) THEN PRINT " E r r o r
490 'continue program

'select digital output MODE
'output data and save in X%
'set P o r t B t o output Byte
'execute MODE 4

MODE 4 , # ";FLAG%:STOP
'select d i g i t a l input MODE
'select P o r t B
'don't change Port B config.
'execute MODE 5

MODE 5, # ''; FLAG% : STOP
on P o r t B"

5.8 MODE 6: AUXILIARY OUTPUT
Description:

MODE 6 provides a means of writing data to any of the auxiliary data bits of the DMA or Interrupt
Control Registers. Data is OR'd into the registers so that other control bits are not altered.

If any of the data in D%(O) thru D%(2) i s not 0 or 1, Error Code 16 i s returned.

5 - 9

PDMA-32 USER GUIDE

Entry Data:
D%(O) = AUX 1 Data (0 Of 1 pektted).
D%(1) =
D%(2) =

AUX 2 Data (0 or 1 permitted).
AUX 3 Data (0 or 1 permitted).

D%(U thru D%(6) = Not used.

Exit Data:

D%(O) thru D%(6) = Unchanged.
FLAG% = 0 if OK; otherwise:

1 if MODE Number < 0 or > 12.
16 if any auxiliary data bit is not 0 or 1.

Programming Example:
520 MD% = 6 ‘select MODE Number
530 D%(O) = 0 ‘AUX 0 = 0
540 D % (1) = 1 ‘ A m 1 = 1
550 D % (2) = 1 ‘AUX 2 = I
560 CALL PDMA32 (ED%, D%(O) , FLAG%) ‘execute MODE 6
570 IF FLAG%<>O THEN PRINT “Error in MODE 6, # “;FLAG%:STOP
580 ‘continue program

Note: There is no MODE provided in the driver for reading back the state of the Auxiliary
control bits, although since both the DMA and Intempt Control Registers are R/W
registers, it is possible to do this. The following program will perform this function.

590 BASE = &€I300
600 IF (INP(BASE + 2) AND &HlO)=&HlO THEN AUXl=l ELSE AUXl=O
610 IF (INP(BASE + 2) AND &H20)=hH20 THEN AUX2=1 ELSE AUXZ=O
600 IF (INP(BASE + 3) AND &H8)=&88 THEN AUX3=1 ELSE AUX3=0

’provide B a s e 1/0 Address

5.9 MODE 7: SETUP & INTERRUPT ENABLE
Description:

MODE 7 installs an interrupt handling routine and enables a hardware interrupt on the level
previously selected in Initialization MODE 0. An interrupt maybe generated from one of three
sources: an external interrupt on rear connector Pin 1 (the internal PDMA-32 timer) or a terminal
interrupt from the selected DMA level. The source is selected by D%(O). In the case of external
interrupts, an interrupt will be generated on the positive edge of the signal if D%(O) = 0 or the negative
edge if D%(O) = 1. After the edge-initiated interrupt, it is a requirement of the 8259 interrupt
controllers in the PC/AT that the interrupt remain asserted until the interrupt service routine starts
execution. The PDMA-32 hardware includes an internal interrupt latch which should be cleared at
some point in your interrupt handler by reading the Interrupt Status Register at I/O address EASE +
OAh.

The various steps performed by MODE 7 are:

1. Check for valid source data.

5 - 1 0

CHAPTER 5: THE MODE CALLS

2. Disable any active interrupt on the selected level.

3. Install interrupt vectors using DOS function call 25h of DNT 21h.

4. Write correct control Byte to PDMA-32 Interrupt Control Register.

5. Enable the 8259 Interrupt Controllers by clearing the appropriate Mask Register Bit for the level
selected. The Interrupt Level is selected during Initialization MODE 0 and is stored in the
Interrupt Level Select Register.

A sample "beep the bell" interrupt service routine is supplied in the PDMA32.ASM source listing
(labelled INTh:) and assembled into the PDMA32.BIN driver, You can modify this interrupt service
routine to do whatever you wish. To develop your own routine, use any text editor to expand and
modify the code and reassemble with the Macro Assembler following the instructions in the file
HOWT0BIN.DOC to generate a BASIC callable .BIN file.

The PDMA-32 can generate a hardware interrupt on any of the 11 expansion bus Levels 3 - 7,9 - 12,
and 14 - 15. The level is software-selectable through the Interrupt Level Select Register, which is set
during MODE 0 initialization. The PC/AT's 8259 interrupt controllers can prioritize 15 different
hardware interrupts. Level 0 is the highest priority and is used by the internal timer, which generates
an interrupt about 18 times/sec. This is used by the BIOS and DOS to provide the system time and
date. Level 1 is used by the keyboard to signal that a key has been pressed and invoke a keyboard
handling routine. Level 2 i s used to cascade the second 8259 controller. Levels 0, X,2,8, and 13 are
internal to the PC/AT and not available on the expansion bus. The interrupt levels have been
assigned by IBM to the standard peripherals as follows:

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10
Level 11
Level 12
Level 13
Level 14
Level 15

Used for interval timer, time of day (not on bus)
Used by keyboard (not on bus)
Used for cascade input on PC/AT only (not on bus)
Used by COM2: serial port if installed
Used by COMl: serial port if installed
Used by LM2 or hard disk if installed
Used by floppy disk drive adapter
Used by LPTl:
Used internally by real time clock (not on bus)
Unassigned
Unassigned
Unassigned
Unassigned
80287 coprocessor error (not on bus)
Fixed disk drive controller
Unassigned

Generally the unassigned Levels 9 - 12 and 15 are the best choices, but you may use any other level if
you know that the corresponding peripheral device is not installed; for example, if you have no
COM2: serial port, Level 3 would be free. It is best to avoid multiplexing one Interrupt Level between
two or more adapters, although this can be done with the restriction that only one adapter's interrupt
can be active at a time. Do not use Levels 6 and 14, which are usually in use by the disk drives.

Since the upper Levels 8 - 15 are cascaded through Interrupt Level 2, they actually have a higher
priority than Levels 3 - 7. If no lower level interrupt is pending and interrupts are enabled, an
interrupt will normally be serviced within a few microseconds of its generation. If a lower level
intempt collides with a simultaneous one from the PDMA-32, it can delay servicing of the PDMA-32
interrupt. The usual culprit here is the Timer Interrupt, on Level 0, it can occasionally delay the
PDMA-32 interrupt by 30-40 microseconds, which in most cases is negligible but in some cases may be

5 - 1 1

PDMA-32 USER GUIDE

a problem. If it is a nuisance, the delay variation can be eliminated by disabling the timer interrupt
through the 8259 Mask Register (located at 1/0 port Wl), and also by refraining from using the
keyboard or COM: ports.

Once a PDMA-32 hardware interrupt has been enabled by MODE 7, it will remain active until
disabled by MODE 8 or stopped by a "self extinguishing" interrupt service routine (one that does the
equivalent of MODE 8 after a certain number of operations).

Entry Data:
D%(O) = Specifies interrupt source:

0 = External Input, positive slope.
1 = External Input, negative slope.
2 = DMA Terminal Interrupt+
3 = Timr Interrupt.

D%(l) thru D%(6) = Not used.

f xit Data:

D%tO) thru D%(6) = Unchanged.
FLAG% = 0 if OK; otherwise:

1 if Mode Number < 0 or > 12.
18 if Interrupt Source Data (DO) is out of range: < 0 or > 3.

Programming Exampler

The following program will beep the bell ad nauseam every two seconds:

520 MD% = 3 ' set timer
530 D % (O) = 20000 'counter 0 divisor
540 D % (1) = 1000 'counter I divisor - 0.5Bz
550 CAU PDMn32 (MOB, D% (0) , FLAG%) 'execute MODE 3
560 IF FLAG%<>O THEN PRINT "Error in MODE 3, # ";FLAG%:STOP
570 MD% = 7 'enable interrupt
580 D % (O) = 3 from timer
590 CALL PDMA32 (MD%, D%(O), FLAG%) 'execute MODE 7
600 IF FLAG%<>O THEN PRINT "Error i n MODE 7, # ";FLAG%:STOP
610 'continue program, try MODE 8 to shut it o f f !

Note: MODE 2 provides information on whether the interrupt is active if there is any doubt.

5.10 MODE 8: DISABLE INTERRUPT
Description:
MODE 8 sets the appropriate bit in the 8259 Interrupt Controllers Mask Register to disable further
interrupts for the level selected in MODE 0. This driver does not restore previous interrupt routine
vectors (possibly required if sharing an Intempt Level with another device). MODES 7 and 8 canbe
expanded to do this, if required.

5 - 1 2

CHAPTER 5: THE MODE CALLS

Entry Data:
D%(O) thru DX(6) = Value irrelevant.

Exit Data:

D%(0) thru D%(6) = Unchanged.
FLAG% = 0 if OK; otherwise: 1 if Mode Number < 0 or 12.

Progmmming Exampier

To turn off the interrupt started in MODE Ts Programming Example:

610 MD% = 8 'select MODE
620 CALL PDMA32 (MD%, D% (0) , FLAG%) 'execute m D E 8
630 IF FLAG%<>o T B W PRINT "Error in MODE 8, # ";FLAG%:STOP
640 'continue program

5.11 MODE 9: ALLOCATE MEMORY FOR DMA
Description:

MODE 9 allocates a memory buffer for DMA, using the Dos Memory Allocate Function 48. This
mode returns the following: a segment in D%(5), which will be the segment for DMA; the DMA
segment offset in D%(6), which will always be 0; and the value of the actual segment allocated by Dos
in D%f7), which may be different than the DMA segment in D%(5) and should be passed to MODE 10
when Deallocation of the DMA segment is necessary. MODE 9 is not usable in BASICA, but it may be
used in QuickBASIC, Quick C, etc. if enough memory is available, or it may be used in compiled
BASIC, C, PASCAL, or FORTRAN.

For more information on MODE 9, refer to Appendix D.

Entry Data:

D%(O) =
D%(l) =

Number of Words or Bytes to Allocate.
0 = Bytes, 1 =Words.

Exit Data:

D%O) = DMA Segment.
D%(6) = Offset (Always 0).
D%(7) = Actual Allocated Segment.
Flag% = 0 If OK; otherwise:

19 Memory AIlocate/Deallocate Error.

Programming Example:

A typical program entry preceding MODE 9 might read as follows:

5 - 13

PDMA-32 USER GUIDE

210 m% = 9
220 D%(O) = 5000
230 D % (1) = 1
240 'Execute MODE 9
250 CALL PDMA(MD%,D%(O)
260 DMASEG=D% (5)
2 7 0 DMAOFF=D% (6)
280 ACTSEG= D%(7)
290 IF FLAG% < > 0 THEN
300 'CONTINUE PROGRAM

'Select mode n-r.
'Allocate 5000 Words.
'Words (should be the same as MODE 1 D% (1)) .

I F-1
'Pass to MODE 1.
'Pass to MODE 1.
'Pass to MODE 10.

PRINT "MODE 9 ERROR #"; FLAG%

5.12 MODE 10: DEALLOCATE MEMORY SEGMENT

Description:

MODE 10 releases memory allocated by MODE 9, using DOS Deallocate Memory Function 49. This
mode requires the Actual segment to be passed in D%(O), whose value is return4 by MODE 9 in
D%(7). MODE 10 should be called when the program is finished using the DMA buffer allocated by
MODE 9.

Entry Data:
D%(O) = Actual Segment (value returned by MODE 9 in D%(7)).

Exit Data:

Flag% = 0 if OK; otherwise:
19 Memory Allocate/Deallocate Error.

Programmming Example:

A typical program entry preceding MODE 10 might read as follows:

210 MD% = 10 'Select mode number.
220 D%(O) = ACTSEG 'Segment to release from MODE 9.

230 'Execute MODE 10.
240 CALL PDMA(MD%,D%(O) ,FLAG%)
250 I F FLAG% < > 0 THEN PRINT "MODE 10 ERROR #";FLAG%
260 'CONTINUE PROGRAM.

5.13 MODE 11 : MOVE DATA FROM SOURCE TO DESTINATION
Description:

MODE 'I 1 moves data from array-to-array, array-tememory, memory-to-array, or memory-to-
memory. The data format can be Words or Bytes, and the strating element canbe specified.

5 - 14

CHAPTER 5: THE MODE CALLS

Entry Data:

D%(O) =
D%W =
D%(2) =
D%(3) =
D%(4) =
D%(5)=
D%(6) =
D%(7) =
D%(8) =

Number of Words or Bytes.
Source Packing; 0 = Bytes, 1 = Words.
Source Segment.
Source Offset.
Source Index
Destination Packing; 0 = Bytes, 1 = Words.
Westination Segment.
Destination Offset.
Destination Index.

Exit Data:
Flag% = 0 if OK; otherwise

20 Byte/Word Count i s 0 or Negative.
21 D%(l) and D%(5) Source and Destination Packing should be 0 for

Bytes or 1 for Words.

Programming Example:

A typical program entry preceding MODE 11 might read as follows:

210 MD% =
220 D%(O)
230 D % (1)
240 D%(2)
250 D % (3)
260 D % (4)
270 D % (5)
280 D % (6)
290 D%(7)
300 D % (8)

11
= 1000
= 1
= hhaOOQ
= o
= o
= 1
= -1
= VARPTX(A%(O))
= o

'Select mode number.
'Numbef of Words.

'From Memory Segment 8000h.
'Offset 0 .
'Copy from first Element.

'Use basics segment.
'Offset of our array.
'Copy to first element.

Copy Words.

Copy Words.

310 'Execute MODE 11.
320 CALL PDMA(MD%,D%(O),FLAG%)
330 IF FLAG% < > 0 THEN PRINT "MODE 11 ERROR #";FLAG%
340 'C0NTf"TE PROGRAM

5.14 MODE 12: DISABLE DMA
Description:
MODE 12 terminates all current DMA operations.

Entry Data:

None.

5-15

PDMA-32 USER GUIDE

Exit Data:
None.

Programming Example:

A typical program entry preceding MODE 12 might read as follows:

210 MD% = 12
220 D%(O) - D%(8)

'Select mode number.
'Don't care.

230 'Execute MODE 12.
240 CALL PDMA(MD%,D%(O) ,FLAG%)
250 IF FLAG3 < > 0 THEN PRINT "MODE 12 ERROR #";FLAG%
260 CONTINUE PROGRAM

5 - 1 6

CHAPTER 6

PROGRAMMBLE INTERVAL TIMER

6.1 THE 8254 PROGRAMMABLE INTERVAL TIMER
Intel's 8254 is the Programmable Interval Timer used in the PDMA-32. This is a flexible, but complex
device consisting of three independent ldbit presettable down counters. Each counter may be
programed to divide by any integer in the range 2 - 65,536. As configured in the PDMA-32, the
input of Counter 0 connects to an 0.01% precision 10MHz crystal oscillator. The output of Counter 0
connects to to both the inputs of Counters 1 and 2. Counter 2 output is buffered and inverted and
available to the user as the TIMER OUT (Pin 22). The other counter, Counter 3, has no external
connections but can be loaded and read if required. The primary purpose of the 8254 is to serve as a
periodic source for interrupts and DMA transfers; no attempt has been made to use its other modes of
operation. The following brief description provides information for programming, the Intel 8254 data
sheet provides more comprehensive details. A block diagram of the PDMA-32 counter arrangement is
shown in Figure 6-1.

KTAL 23 8254 TIMER COUNTER I
CLOCK , I

GATE 0 COUNTER 0
CLOCK IN

CLOCK 0 16-BIT DOWN COUNTER

8254 TIMER X l A L L J

CLOCK ,
GATE 0 COUNTER 0

CLOCK IN
CLOCK 0 16-BIT DOWN COUNTER

I I I

GATE 1 1 OK
+5v+ -

CLOCK 1 16-EIT DOWN COUNTER

I t 5 v
1 OK I INTERNAL CIRCUITS

GATE 2
CLOCK IN N.C.

CLOCK 2 16-BIT DOWN COUNTER
I

Figure 6-1. Programmable timer configuration.

Each counter has a clock input, a gate input that controls counting and triggering, and an output. AI1
the gate inputs are tied toigether and are available externally on Pin 23 (TIMER GATE IN). There are
six possible operating configurations for each counter, as follows:

CONFIGURATION DESCRIPTION

0 PULSE ON TERMINAL COUNT. The output is initially low for this configuration. After
the count loads and the counter decrements thru zero, the output goes high and remains
high until the counter is reloaded. The counter continues to decrement after passing thru
zero and counting can be inhibited by a low gate input. This mode produces a single
positive going output transition such as may be required in a time delay initiated by the
program.

input and goes high when the counter passes thru zero. The period that the output is
low is set by the loaded count. If the gate input goes high again before the one shot has
timed out, a new timing cycle is initiated (the one shot is re-triggerable and, if a new

1 PROGRAMMABLE ONE SHOT. The output goes low after a rising edge of the gate

6-1

PDMA-32 USER GUIDE

count is loaded, it will not become effective until any cycle in progress has terminated).
This provides a hardware triggered delay or one-shot.

RATE GENERATOR (or Divide-By-N counter). The output goes low for one input clock
period every N counts, where N is the count loaded. The gate input when low, forces the
output high, and on going high, reloads the counter. Thus, the gate input can be used to
synchronize the counter. This configuration is useful for generating periodic interrupts
to bigger A/D conversions.

high for half of the count and Iow for the other half. If N is even, a symmetrical square
wave output is obtained. If N is odd, the output is high for (N+1)/2 counts and low for
(N-1)/2 counts (has a l-count assymmetry). This configuration can be used in the same
way as Configuration 2 for periodic triggering or for frequency synthesis.

SOFIWARE TRIGGERED STROBE. After the mode is set the output is high. When a
count of N is loaded the counter W n s counting and the output will go low for one
input clock period as it passes thru zero. The cycle is repeated on loading another count.
The gate input may be used to inhibit counting.

except that the output will go low for one clock period at the end of the cycle and return
lugh again. The start of the cycle is triggered by the rising edge of the gate input, and as
in Configuration 1, is retriggerable.

2

3 SQUARE-WAVE GENERATOR. Similar to Configuration 2 except that the output is

4

5 HARDWARE TRIGGERED STROBE. This is essentially the same as Configuration 1,

The 8254 programmable interval counter occupies four I/O address locations in the PDMA-32 I/O
address map:

ADDRESS REGISTER TYPE DESCRIPTION

Base Address +4 R€Zld/Wlite Counter 0

Base Address +5 Read/write Counter 1

Base Address +6 Read/write Counter 2

Base Address +7 Write only Control

Before loading or reading any of the individual counters, the 8254 conrol register must be loaded with
data setting the counter operating configuration as above, the type of read or write operation that will
be performed (see following), and the modulus or binary (045,535) or BCD (Binary Coded Decimal 0-
9,999). The format of the control byte is as folIows:

D7 D6 D5 D4 D3 D2 D1 W

SC1 SCO RL1 R L O M2 M1 MO BCD
I 1 I I I I I

i 1

SCl-0 - Control which counter is selected.

sc1 sco COUNTER

0 0 0
0 1 1
1 0 2
1 1 Readback Command (see next section)

6-2

CHAPTER 6: PROGRAMMABLE INTERVAL TIMER

RL1-0 - Control the type of Read/Load operation.

RLl RLO OPERATION

0 0 Counter latch (see following)
0 1 ReaMoad most significant byte,
1 0 ReaMoad least significant byte
1 1 Read/load least significant byte, followed

by most significant byte (MSB).

M2-0 - Control counter configuration as above.

M2 M1 MO CONFIGURATION

0 0 0 0 - Pulse on terminal count.
0 0 1 1 - Programmable one shot.
X 1 0 2 - Rate generator.
X 1 1 3 - Square wave generator.
1 0 0 4 - Software triggered strobe.
1 0 1 5 - Hardware triggered strobe.

BCD - Controls binary/decimal counting.

BCD COUNTER TYPE

0 Binary 16 bits
1 Decimal 4 decades

The counters may be proogrammed to count in binary (modulus 2) or binary coded decimal (modulus
10) modes by the BCD bit. The binary mode with a full count of 65335 has the obvious advantage of
providing a greater count range than the BCD mode which has a 9,999 full scale and is also more
compatible with internal storage of binary integers used by the PC.

6.2 READING & LOADING THE COUNTERS
If you attempt to read the counters on the fly with a high-input frequency, you will most likely obtain
erroneous data. This is caused partly by the rippling of the counter during the read operation and also
by the fact that the low and high bytes are read sequentially rather than simultaneously, making it
highly probable that carries will be propagated from the Iow to high byte during the read cycle. To
circumvent these problems, you can perform a counter latch operation in advance of the read cycle.
To do this you load the RL 1/0 bits of the control byte with "0 B' which instantaneously latches the
count of the selected counter in a 16 bit hold register. An alternative method of latching counter(s)
which has an additional advantage of operating simultaneously on several counters is by use of the
readback command - see below. A subsequent read operation on the selected counter returns the held
value. Latching is the only way of correctly reading a counter "on the fly" without disturbing the
counting process. If you do not specify a latching operation, then the counter itself will be read. You
can only rely on directly read counter data if the counting operation is suspended while reading e.g by
removing the clock input or taking the TIMER GATE low.

6 - 3

PDMA-32 USER GUIDE

For each counter you are required to specify in advance the type of read or load operation that you
intend to perfom. You have a choice of loadingheading the high byte of the count or the low byte of
the count, or the low byte followed by the high byte. This last mode is of the most general use and is
selected for each counter by setting the RL 1/0 bits to "1 1". Subsequent read/load operations must be
performed in pairs in this sequence, otherwise the internal sequencing flip-flop of the 8254 will get out
of step.

If the XO and SC1 bits are both set to 1, you can perform two types of operations. When CNT=O (see
below) counters selected by CO thru C2 are latched simultaneously. When STA=O, the counter
status byte will be read on accessing the counter I/O location. The status byte provides information
on the current output state of the counter, and its operating configuration. The readback command
byte format is as follows:

D7 D6 D5 D4 D3 D2 D1 W

SC1 SCO CNT STA (22 C1 co 0
I I I I I I 1

SCO and SCl = 1: Read-back Command

CNT: When 0, latches counters selected by CO - C2.

STA When 0, returns status byte of counters selected by CO - C2.

CO - C2: When high, seIect a particular counter for a readback operation:

CO = 1 selects Counter 0
C1= 1 selects Counter 1
C2 = 1 selects Counter 2

The status byte returned if STA = 0, consists of:

I I I I I I I I I
OUT NC RL1 F Z O M2 M1 MO BCD

OUT: Current state of counter output

N C Null count. This indicates when rhe last count loaded into the counter register has
actually been loaded into the counter itself. The exact time of load depends on the
configuration selected. Until the count is loaded into the counter itself, it cannot be
read from the counter.

If both the STA and CNT bits are set low and RLO and RLl have both been previously set high in the
counter control byte (selecting 2 byte reads), then reading a selected counter location will yield as
follows:

1st. read : Status byte
2nd. read : Low byte of latched data
3rd. read : High byte of latched data
4th. read : Low byte of counter direct
5th. read : High byte of counter direct

6 - 4

CHAPTER 6: PROGRAMMABLE INTERVAL TIMER

Programming examples in BASIC are as follows:

xxxlo OUT BASE + 7 , &836 'set Counter 1 to squarewave mode
xxx20 OUT BASE + 7, ha76 'set Counter 2 to squarewave mode
xxx30 X = 1000 'number t o load both counters
xxx40 xB8 = IrJT(X/256) high byte
xxx50 XL% = X - 256 * XH% low byte
xxx60 OUT BASE + 4, XL%
xxx70 OUT BASE + 4, Xa% 'load Counter 0
xxx80 OUT BASE + 5, XL%
xxx90 OUT BASE + 5, XH% 'load Counter 1

The two counters will now be dividing the 1 or 10 MHz xtal dock by l,OOO,OOO (1,000 x 1,000) so that
COUNTER 2 OUT will now be outputting a 1 or 1OHz squarewave (depending on crystal input).

The following lines would determine the status of Counter 1:

yyylo OUT BASE +7, SHE4 'control byte t o read status
yyy20 PRINT EEx$ (I N P (BASE + 5)) 'read status

6 - 5

CHAPTER 7

I

XFZR. REQ. 4
I NPUT

(P I N 22

APPLICATIONS

+SONS Y I N .

7.1 TYPICAL HANDSHAKE CONNECTION
This section describes the connecting and operating of the PDMA-32, and then it expands to specific
examples of using A/D and D/A converters. Whether you are transfening Bytes or Words into or out
of the PDMA-32, the transfer control signals, XFER REQ. and XFER ACK. work the same way. Their
timing is shown in Figure 7-1.

Figure 7-1. XFER REWXFER ACK Timing

For inputs to the PDMA-32, data should be presented to the port($ and, when stable, the XFER REQ.
input should be taken high. About 6ons later, the XFER ACK. will go low, indicating that the PDMA-
32 has initiated a DMA request cycle. The input data must remain stable until XFER ACK. returns
high, indicating completion of the transfer cycle. The next byte or word of data can then be presented
to the PDMA-32 and the cycle repeated to store it in the next memory location. T h i s handshake is the
same whether you are transferring bytes or words. The XmER ACK. will typicalIy go low for at least
2.4 microseconds on PC/ATs with 8237 DMA controllers clocked at 3MHz and may be held low for
up to 5 microseconds on some transfers by DMA latency.

For outputs from the PDMA-32, when the next byte or word of data is required, the XFER REQ. input
should be taken high. The XFER ACK. will go low on receipt of the transfer request and remain low
until the byte or word has been transferred and the new data is valid. The data then remains latched
on the output ports until the next transfer request.

If you want to clock data out at a steady rate, the internal 8254 Timer may be substituted for the
external XFER REQ. by appropriate programming of the DMA Control Register. The Timer may be
set to a suitable rate. Note that the Timer pulse that generates the transfer request does not appear on
the XFER REQ. input; this input is inactive, but the same Timer pulse that generates the internal
transfer request is always present on the TIMER OUT. This is sometimes useful as a reference signal
or in double buffering the output data and reclocking to eliminate jitter from DMA latency. Timer
operation may be suspended by taking the TIMER GATE input low; it will continue from where it left
off on, taking the TIMER GATE input high again.

The A DIR and B DIR port direction outputs provide information on the signal direction of the ports
and if required can be used to activate bidirectional drivers for rebuffering the output data. This can

7 - 1

PDMA-32 USER GUIDE

let you perform a series of DMA outputs to one device connected to the ports followed by a series of
DMA inputs from another on the same ports. The direction signals may be used to enable the right
devices as appropriate. In word mode I/O, the direction of both A and B ports is provided by the A
DTR output (ignore B DIR).

When enabled through the Interrupt Control Register, the INTERRUPT INPUT can feed an external
interrupt signal to any of the PC/AT expansion bus intempt levels. The external interrupt pulse may
be as short as lM3ns as it triggers a monostable in the PDMA-32 which sets a latch to insure correct
interrupt service operation. The latch should be cleared during execution of the interrupt handler by
reading the Interrupt Status Register at I/O address BASE + O A h . Interrupts can be generated on
negative or positive edges of the external signal, the slope being selected through the Interrupt
Control Register. It is also possibfe to select the Timer output or the DMA controller terminal count
pulse as interrupt sources through software control via the Interrupt Control Register.

The auxiliary outputs (Awl -3) provide three extra output bits that are user-programmable and may
be useful in selecting and controlling external devices. Since these bits are part of the DMA and
Interrupt Control Registers, it is necessary to first read these registers and OR the auxiliary data in, so
that none of the other register bits are affected. The PDMA32.BIN driver does this operation
automatically.

Power from the computer +5V supply is available from the PDMA-32 connector. This can be used to
power external buffering logic, small peripheral devices, and DC/DC converters as well as providing
a connection point for pull-up and terminator resistors, if used. When using the internal computer
power, be careful not to apply external power sources such as line voltage to the connections as this
could damage to your computer. Although the +5V supply is a convenient feature, it should be used
with caution. Use an external power supply if there is any possibility of abuse. The +5V supply is
well protected against short circuits that will result in a shut down of the whole computer. To restore
power, switch off the computer, remove the short circuit, and switch the computer back on again. The
amount of power available is dependent on the other peripheral devices in the computer, but in any
case it is recommended that you limit current drawn to less than 2A due to copper trace and connector
limitations on the PDMA-32.

7.2 WAVEFORM GENERATION WITH A D/A CONVERTER
Note the use of an external latch to resynchronize the data to the internal Timer clock. This avoids any
time jitter from DMA latency, although the D/A output will always be one Timer clock period behind
the output of the PDMA-32. Data output can be single-shot or continuous, using Mode 1 of the
PDMA32.BIN driver. The schematic in Figure 7-2 is a working example; other components (16-bit
D/As may be substituted).

The PDMA-32 delivers +5V power from the computer on Pins 20 and 21 of the connector. This power
may be used to power logic circuits of the external interface, and a small DC/DC converter could also
generate the 415V analog supplies for the D/A from the +5V power. Alternatively, an external supply
may be used.

7 - 2

CHAPTER 7: APPLICATIONS

DAC-SO-CBI-V I
El 82 E3 B L 8 1 86 07 111 BV 110 811 I m 111 BV a10 811 I m €

L

?DMA-32 Connector

Figure 7-2. Use of external Latch to resynchronize data to the internal timer clock.

7.3 HIGH SPEED A/D CONVERSION
Figure 7-3 shows connection of a 12 bit A/D converter (16 bit A/Ds may also be used). The A/D is
triggered by the PDMA-32 Timer and the A/D's EOC (end of conversion) signal generates the DMA
XFER REQ. after each conversion. Rates in excess of loOKHz are readily obtained using Mode 1 of the
PDMA32.BIN driver. The AUX outputs are used to select 1 of 8 channels using an input multiplexer.

7-3

PDMA-32 USER GUIDE

15"
aK
RO ,,,"

010 EUF
I 0 BUF.

Fl STATUS

CONNECTOR

HA-5310 I 1

I 1

I

Figure 7-3. Connection of a 1Z-bii AID Converter.

7.4 COMBINED AID 81 D/A CONVERSION USING DIRECTIONAL
CONTROLS

This application combines the previous two examples and uses the A DIR diredion output signal to
control whether the A/D or D/A converter is enabled. With this Circuit, it is possible to digitize an
event at high speed with the A/D and reconstruct it back through the D/A either at the same speed or
a reduced speed to drive a plotter for instance. A minimum of external circuitry is required.
Connections are as shown in Figure 7-4.

7 - 4

CHAPTER 7 : APPLICATIONS

I l l

i
,,,,,

Figure 7-4. Connections for combined A/D and DIA Conversion with directional
controls.

7 - 5

PDMA-32 USER GUIDE

7.5 COMMONLY ENCOUNTERED PROBLEMS
The following entries represent some of the most common application problems with the PDMA-32:

1. Memory PARITY CHECK ERROR. This problem may occur on input mode transfers only if you
change the data during the period when the XFER ACK. is low (active). Your data should be
stable prior to issuing an XFER REQ. and remain stable throughout the period when the transfer is
taking place - signified by XFER ACK. being in the low state. Changing the data in th is interval
might alter it in the middle of a memory write, giving the memory insuffiaent data set up time
and hence causing the parity error. Extremely noisy input data can also produce the same
problem.

2. XFER ACK. remains low after the last DMA transfer. This is caused by issuing XFER REQs above
and beyond the number required by the transfer count programmed into the 8237 DMA
controller. Once the specified transfer count is reached, the 8237 DMA controller automatically
masks out the DMA channel. Issuing an XFER REQ. to the PDMA-32 is acknowledged by taking
the XFER ACK. low, but since the channel is inactive, the PDMA-32 is unable to obtain service
from the controller and correctly keeps XFER ACK. low, indicating that the transfer is not
compIete. This condition does not matter, but if you wish to clear it, simply disable DMA from
the PDMA-32 by taking Bit 7 (DMA ENABLE) of the DMA Control Register low to disable DMA.
This wilI also set the X E R ACK. back high (clear the condition).

REQs (from the Timer, the throughput is limited by the worst-case transfer time (close to 5
microseconds). Under synchronous conditions, you can obtain a major improvement (50 - 80%) in
throughput by adding a FIFO (first-in first-out) buffer memory to the inputs/outputs of the
PDMA-32, you are then limited by the average throughput time rather than the worst case time.

4. First transfer problems. If you write your own setup code for the DMA controllers, it is common
to suffer from either missed or doubled first transfers in block transfers. T h i s is indicative of
something being wrong in your setup sequence. Examine your steps carefully, once you
understand precisely what is happening, you can correct this problem.

8237 DMA controller with the transfer count rather than the (transfer count - 1).

3. Obtaining the maximum speed. Caused of DMG latency, when using constant frequency XFER

*

5. Extra transfers. An additional transfer at the end of a block is usually caused by programming the

...

7 - 6

CHAPTER 8

MAINTENANCE & REPAIR

8.1 SERVICE 81 REPAIR
The PDMA-32 requires no periodic calibration. If a digital output or input appear faulty, you have
two options for repair. First, you may replace any or all of the critical integrated circuits that
communicate with the external world (these circuits are in sockets that allow replacement; the
replacement procedure is in the next section). Alternatively, you may return the board to the
manufacturer for repair. In the latter case, phone ahead to the manufacturer for instructions.

8.2 PERFORMING YOUR OWN REPAIRS
This series of tests and fixes involves a voltmeter, an oscilloscope, and possibe replacement of some
standard 74Ls series logic available from many manufacturers. All the integrated circuits are
inexpensive and socketed for easy replacement. To remove a chip, insert a small screwdriver between
the chip and socket top and gently pry it out, working both ends evenly.

The first repair step is diagnosing the fault. The most likely fault will be damage to an output or input
due to static electricity, shorts to power supplies, or other over voltages. Check each output port
using BASIC or DEBUG:

O U T B A S E + 2 , 3 'set p o r t s A h B to output mode, byte 1/0
OUT BASE, 0 'check a l l l i n e s port A low
OUT BASE + 1, 0 'check a l l l i n e s port B low

Check Outputs A@A7 and BO-B7 with a digitaI voltmeter. Every output should be between 0 and
+0.4V, Next, set all the outputs high:

OUT EASE, 255 'set port A outputs high
OUT BASE + 1, 255 'set port B outputs high

Use the voltmeter to check that every output is between +2.4 and +5V. Note which outputs are faulty
if any. If there are no faults, check the inputs:

PRINT INP(BASE) 'read port A - should return 255
PRINT INP(BASE + 1) 'read port B - should return 255

Next, output zero again:

OUT BASE, 0
OUT BASE + 1, 0

and read back the result:

PRINT INP(BASE) 'read port A - should return 0
PFSNT INP(BASE + 1) 'read por t B - should return 0

8 - 1

PDMA-32 USER GUIDE

If there is any fault in the returned data, note which input line contains the fault.

If any of Outputs A0 - A7 are faulty, replace U6 (74LS374). If the outputs are OK but any input is
faulty, replace U5 (74LS24.4). If any of Outputs BO - B7 are faulty, replace U11 (74LS374). If these
outputs are OK but any input is faulty, replace U17 & Ul8 (both 74LS24.4).

The other inputs and outputs can be checked as follows:

1. A DIR and B DIR. Write 0 and 3 alternately to the DMA Control Register at BASE +2. If either
output fails to change state, replace U21 (74LSO4). The fault may also be due to a damaged DMA
Control Register chip - Refer to the next step.

2. AUX 1 and AUX 2. Write 0 and 48 alternately to the DMA Control Register at BASE +2. If either
output fails to change state, replace DMA Control Register chip U3 (74Ls273). If the AUX 1/2
outputs change state correctly but cannot be read back correctly from the DMA Control Register,
replace U8 (74LS2441, as well.

3. AUX 3. Write 0 and 8 alternateIy to the Interrupt Control Register at BASE +3. If the output fails
to change state, replace U2 (74LS273). IF the AUXl output cannot be read back correctly from the
Interrupt Control Register, replace U7 (74LS2441, as well.

4. Run TIMER.BAS. If you cannot see a lKHz repetition rate pulse on the TIMER OUT, replace U21
(74Lso4N). For any other problem with the timer (for example, TIMER GATE is inoperative, no
pulse with U21 replaced, or wrong output frequency), replace U1,8254, or 82C54.

5. Run DMA.BAS using an autoinitialize input mode and selecting the internal timer as source. The
XEER ACK. should go low for several microseconds at the timer rate, TIMER OUT can be used to
synchronize a scope. If XFER ACK. is stuck low or does not appear to respond, replace U20
(74Ls74).

This series of tests will detect the majority of faults caused by damage to the inputs or outputs. All
other faults will require return of the board to the factory for service.

8 - 2

APPENDIX A

SPEClFlCATlONS

i5V Power

-5V, +12V, -12V Power

YO Ports

Logic Output Levels

Logic Input Levels

Timer

1/0 Address

PC Bus Internal
Loading

Interrupts

Interrupt Source

DMA Level

DMA Transfer Source

DMA Transfer Rate

Maximum Number Of
PDMA-32s In One

Computer

850mA typical / 1A mu.

Not used.

Ports A & B - each of 8 bits Direction software-selectable.
A~xiliary * 3 outputs.

PortsA&B-'ITL/DTL:
0.4V max low at Isink = 24mA,
2.4V min high at Isource = -2.6mA.

All other outputs 'TTWDTL:
0.4V max low at Isink = XmA;
2.4V min high at Isource = -4OOuA.

All inputs 'ITL/DTL compatible:
0 . W max low level at 400uA;
2.0V min high level at 20uA.

Internal 8254 timer & lOMHz crystal clock Pulse rates from 2.5MHz to 0.002Hz.

Can be Set on any Idbit boundary from Oh to 3FOh (IOOh - 3FOh useable in
XIAT).

One 74LS TTL load on all inputs.

Software-selectable on Levels 3 - 7,9 - 11, and 14 - 15. Active when interrupt
enabled. tri-state otherwise.

1 of 3 software selectable:
External input *slope;
PDMA-32 timer;
DMA terminal pulse.

Software selectable:
Byte transfer levels 0 - 3.
Word transfer levels 5 - 7 (only active in DMA transfer, tri-state. otherwise).

1 of 2 software selectabIe; extemal request PDMA-32 h e r .

350,000 transfers/sec asynchronous.
200,000 transfers/six clocked synchronous.

Limited only by avaitabihty of expansion slots and/or DMA or Interrupt Levels for
Concurrent use.

A - 1

PDMA-32 USER GUIDE

Connector On rear plate, 37-pin D-type male.

User Adjustmentdcal- None required.
ibration

Board Size 13.2" long x 3.9" high full-size PCIAT connector.

Weight 6 oz. (170 gm.).

Operating 0 to 60' C.
Temperature Range

Storage Temperature
Range

40 to 100" C.

Humidity 0 - 90% noncondensing.

...

A - 2

APPENDIX B

SUMMARY OF ERROR CODES

The following list contains Error Code definitions and suggested actions.

Error 0: No Error, OK.

Meaning:

Action: None.

Function called executed without errors.

Ermr 1: Drlver NUT lnitlalized.

Meaning:

Action:

Mode 0 was not called to perform Initialization.

Make a call to Mode 0.

Error 2: Mode Number < 0 or > 12.

Meaning: Illegal Mode number detected.

Action: Specify Mode Numbers 0-12.

Error 3: Invalid Base Address, < 512 or > l O i 6 (< 2UOh or > 3F8h).

Meaning:

Action:

Specified Board Base Address out of range.

Specify Address in the range of 512 to 1016 (200h to 3F8h).

Error 4: Board Hardware Error.
Meaning: An attempt to write and read from the PDMA-32 failed.

Action: Check the board's I/O address dip switch. Consult manufacturer if
problem persists.

Error 5: DMA Level /ncorrect.

Meaning: Incorret DMA Level Specified.

Action: Specify DMA level as 0-3 for Byte, or 5-7 for Word.

Error 6: DMA Page Wrap-Around Error.
Meaning:

Action:

Mode 1 detected a DMA Page Wrap.

Use Mode 9 to allocate a Good DMA Buffer.

8 - 1

PDMA-32 USER GUIDE

E m r 7: DMA Data Direction Not 0 Or I .

Meaning:

Action:

Mode 1 reports selected DMA direction Invalid.

Direction should be (0) for Input or (1) for Output.

Error 8: Intempt Level Out Of Range.

Meaning:

Action:

Mode 0 reports Intempt LeveI out of range.

Select Interrupt Level 3-7,9-12 or 14-15.

Error 9: Intempt Source Out Of Range, .C 0 or > 3 -
Meaning:

Action:

Mode 7 reports Interrupt source not 0, 1 ,2 or 3.

Select Interrupt source 0,1,2 or 3.

Error 70: lnferrupt Slope Not 0 or 1.

Meaning:

Action:

Mode 7 reports Incorrect Interrupt Slope.

Specify 0 for Positive Slope or 1 for Negative Slope,

Error 1 I : Auto-Recycle Not 0 or 1.

Meaning:

Action:

Mode 1 reports Auto Recycle error.

Specify 1 for Auto Recycle ON, 0 for Auto-Recycle OFF.

Error 12: Bfle Or Word Specifier Not 0 Or 1.

Meaning:

Action:

Mode 1 reports Invalid Byte/Word Specifier.

Specify 0 for Byte DMA Transfers or 1 for Word DMA Transfers.

Error 13: Digital Output Data Out Of Range, c 0 or w 255.

Mode 4 reports data out of range.

Specify Digital Output Data 0-255.

Meaning:

Action:

Error 14: Pon Configuration Code Out Of Range, < 0 or w 2.

Meaning:

Action:

Mode 4 or 5 reports InvaIid Port Selection.

Specify 0 for Port A, 1 for Port B or 2 for Ports A + 3.

B - 2

APPENDIX B: SUMMARY OF ERROR CODES

Error 15: Configuration Change Data Not 0 Or 1.

Meaning:

Action:

Mode 5 detects Port Configuration change error.

Specify 0 for No Change or 1 for Change Pork Configuration.

Error 16: Auxiliary Output Data Out Of Range.

Meaning:

Action:

Mode 6 reports Invalid Data.

Specified Auxiliary Data Bit Must be 0 or 1.

Error 17: Transfer Clock Source Dafa /liegal, Not 0 Or 1.

Meaning:

Action:

Mode 1 reports Illegal Clock Source.

Specify 0 for External Clock, 1 for Internal Timer.

Error 18: Word Transfers On ODD Boundary.

Meaning:

Action: Specify Valid Word Count.

Mode 1 reports IIlegaI Word Boundary.

Error 19: Memory Allocation Error.

Meaning:

Action:

Mode 9 reports it cannot dlocate a DMA Buffer.

See Appendix D for more information.

Error 20: Word Count 0 Or Negative From Mode 11.

Meaning:

Action: Specify a count >O
Mode 11 reports a Count of 0 or c 0.

Error 21: Packing Should Be 0 For Bytes Or 1 For Words.

Meaning:

Action:

Mode 11 reports Illegal packing selected.

Specify 0 for Byte or 1 for Word Packing.

...

B - 3

APPENDIX C

UNDERSTANDING DMA

C.l WHAT IS DMA?
Consider the problem of moving a large amount of data to or from an 1 / 0 device. This requirement is
commonly encountered in the operation of many peripheral devices (for example disk drives) that are
constantly moving large amounts of data into and out of memory. An obvious way of making the
transfer would be a short program which for an input operation might read a byte from the 1/0 port
into the accumulator {AX register) of the 8088 processor and then move the data from the AX register
to a memory location to store it. In addition, we have to keep track of the memory locations where the
data is going. By far the simplest way of handling this is to lay the data down in contiguous locations
within a block of memory, using one of the processor's index registers to control the address. Each
time a byte is transferred, the index register (usually the DI or Destination Index register) is
incremented or decremented to point to the next location. A typical example assembly language
program to do this might be as follows:

We could read each byte of data from memory and send it out to an 1 / 0 port using the main
processor and a program loop similar to the example below.

SETUP :

READ:

CONT :

MOV AX,SEGMENT
MOV DS,AX
MOV D1,OFFSET
MOV cx, COUNT
MOV DX , IOPORT

I N AL,DX
MOV [D I] , A L
INC D I
LOOP READ

. I

;setup segment of memory for transfers

;setup start address within segment
;setup number of bytes t o transfer
;DX = 1/0 port address

;read byte from 1/0 port (8)
;store data (101
;increment index (2)
;continue reading until CX=O (17)

;yes , continue with program

The opposite of transferring data from memory to an 1 /0 port is essentially similar. The numbers in
parentheses following the READ: label are the number of processor clock cycles required to execute
each instruction. On the original IBM PC, which has an 8088 processor operating at a clock frequency
of 4 . m H z , you would find the loop takes 8 + 10 + 2 + 17 = 37 cycles or 7.8 microseconds to transfer
each byte. If you were operating with a faster processor, such as a 12 MHz 80286 or 16 MHz 80386,
and using exactly the code shown above, you would find transfer times are roughly inversely
proportional to the clock rate (for example, a 16 MHz 80386 would take only 1.8 microseconds/byte).
The 80286 and 80386 also include complex string I/O instructions (OUTSB & INSB) which are not
available on the 8088. Using these instructions would be even more efficient. Note also the following:

1. The processor is tied up 100% of the time in transferring data; it cannot be used for any other
function while the transfer is in progress without interrupting the transfer.

2. The rate of data transfer is controlled by the processor clock and may not correspond to the rate at
which the 1/0 device wants to handle the data. This problem maybe resolved by polling the 1 /0
device to see if it is ready, or by having the 1/0 device generate a hardware interrupt, But both of
these solutions add further code to the 1/0 routine, slowing down transfer rates even further.

c - I

PDMA-32 USER GUIDE

3. If the processor has to handIe a hardware interrupt from one device (the keyboard, COM port, or
system clock) while it is involved in handling a data transfer to another device, the delays
involved may cause it to miss data, or at least will necessitate a discontinuity in the data flow.

It would be nice to have a way of transferring data without involving the processor, so as to free up as
much as possible to attend to execution of the program. It would be an added advantage if we could
speed up the transfer rate compared with the example programmed transfer above and also be able to
control the rate easily. Since all we want to do is to move a byte or word directly to/from an 1 / 0 port
from/to memory without any kind of intermediate processing on the way, it is better not to use the
processor at all, but to provide specialized hardware that will accomplish this commonly required
task and tackle it faster than the processor could do it. The process of passing data to/from an I/O
device directly from/to memory is known as DMA (Direct Memory Access), and the hardware that
controls this process is known as the DMA Controller, which in the case of the IBM PC/AT is handled
by two 8237 DMA Controller chips on the system board.

C.2 THE MECHANICS OF A DMA TRANSFER
What happens when a device wants to transfer data to/from memory? The first step is for the device
to send a signal known as the DMA REQUEST (DREQ for short) to the DMA Controller. The
processor normally controls the computer's address and data buses as well as control signals such as
the memory read/write (MEMR & M E W) and 1/0 read/write (IOR & IOW) lines. To accompIish a
DMA transfer, control of these lines must be temporarily relinquished to the DMA Controller. On
receipt of the DREQ, the DMA Controller in turn issues a HOLD REQUEST to the processor. As soon
as it can and when it has completed any part of an instruction in process that involves a bus cycle (I/O
or memory access), the processor issues a HOLD ACKNOWLEDGE s i p 1 to the DMA Controller,
and simultaneously disconnects itself from the address, data, and control buses. T h i s process is "tri-
stating," as the connections to the processor assume a third open-circuit state compared to their usual
binary states of Is and 0s or highs and lows. Although the processor i s in a HOLD state, it has not
necessarily stopped. During the hold state, the processor continues executing parts of instructions or
instructions that do not involve any external 1 / 0 action (bus cycles); when it can no longer continue, it
will insert wait states until the DMA Controller gives the bus back.

On receipt of the HOLD ACKNOWLEDGE, the DMA Controller begins its work. It releases its own
connections to the address and control buses from their tri-state condition, asserting a valid memory
address from an internal counter and then issuing a DMA ACKNOWLEDGE (DACK) signal to the
1 / 0 device followed by a simultaneous IOW and MEMR for a data output, or IOR and M E W for
input. The peripheral in turn responds to the DACK and IOR or IOW signals by placing or receiving
data on the data bus, effectuating a transfer directly to/from memory. On compIetion of the
MEMR/IOW or MEMW/IOR from the DMA Controller, the controller removes DACK, releases
HOLD REQUEST, tri-states its own address and control lines, and increments or decrements its
internal address counter to be ready for the next transfer. The processor in turn regains control of the
buses, continuing execution of the next instruction. From the assertion of DREQ to completion of the
cycle takes about 2.5 - 5 microseconds, depending on the iength of the instruction that the processor
happens to be engaged in on receipt of the DREQ. The actual amount of time between instructions
that the processor loses the bus to the DMA Controller is even less, about 1.7 microseconds. The effect
on program execution is minima1 even when transferring data at very high rates which can exceed
500,000 bytes/sec on the PC/AT. To prevent the DMA Controller from "hogging" the buses if the
DREQ is held constantly high, the Controller always allows the processor to perform at least part of an
instruction between each DMA transfer, so that even operating "flat-out," DMA cannot g a b much
more than 30% of the bus bandwidth.

c-2

APPENDIX C: UNDERSTANDING DMA

In order to perform DMA operations the peripheral must include hardware that generates the DREQ
and responds to the DACK. The PDMA-32 includes this special hardware, and this is what
distinguishes it from a simple digital 1/0 interface that does not, such as the manufacturer's Model
PIO-12 (Note: The PDMA-32's DMA capability does not preclude it from being used as a standard I/O
port for programmed I/O using IN'S and OUTS). The PDMA-32 works in conjunction with the 8237
DMA Controller(s) which is a system component that is a part of the PC and PC/AT architechre and
is essential to the operation of the PDMA-32.

It is important to appreciate that the DMA Controller sets the dynamics of the DMA transfer; nothing
in the peripheral J/O device can alter the maximum data- handling speed of the controller. This fact
leads to surprising side effects, in particular the IBM PC/AT which is generally three times faster than
a standard PC or PC/XT is actually slower on DMA transfers because its DMA Controller clocks
operate at 3MHz instead of the 4.77MHz on the PC. On the other hand it can also perform word (16
bit) transfers on its extended data bus as well as byte (8 bit) transfers OR the PC<ompatible section of
its data bus. Since word transfers amount to two bytes of data, the overall transfer rate in bytes-per-
second for word transfers is higher on the PC/AT than the PC despite the slower controller clock rate
but correspondingly, the single byte transfer rate is slower. The PDMA-32 is designed to take
advantage of the PC/AT's word transfer capabihties as well as operate in byte transfer mode when
needed.

C.3 DMA STRUCTURE OF THE PC/AT
Although we have discussed the operation of a single device using DMA, it is customary to cater to
the needs of several devices by providing several DMA channels, each one dedicated to a particular
device. The 8237 provides four separate DMA channels known as Levels 0 thru 3. Correspondingly,
there are four DMA request lines, DREW - DREQ3, and four corresponding acknowledge Iines,
DACKO - DACK3. The priorities of these lines are set according to two possible protocols set by a bit
in the controller command register, either Fixed Priority (where lower DMA levels have higher
priority than higher levels) or Rotating Priority (where each level takes a turn at having the highest
priority). The PC €3103 sets the 8237 to operate in Fixed Priority mode upon power up, and it is
generally inadvisable to change this as it may interfere with the correct operation of the computer or
other peripheral devices that use DMA

The original PC and PC/XT design provided a single 8237 DMA Controller on the system board and
the four DMA levels were allocated to system resources as follows:

DMA LEVEL FUNCTION

0 Memory refresh

1 Unassigned, general I/O use

2 Floppy disk controller

3 Hard disk controller (if installed)

Apart from its uses for high-speed data transfer, the DMA Controller includes counter hardware that
cycles through the memory addresses. Thus, as a byproduct of its design, the Controller can also be
used to refresh dynamic memory, saving the cost of a separate memory refresh controller. This is
what IBM chose to do in the original PC design using Level 0 to perform this function with its DREQ

c - 3

PDMA-32 USER GUIDE

being driven from Counter I of the internal 8253 timer at a 15 microsecond interval. On PC/AT
memory refresh has been handled by additional hardware and does not involve the DMA Controller.

On PC/XTs, only one DMA channel is usually available for expansion use, Level 1. All levels are only
capable of byte (8 bit) transfers, and the controller can make up to 65,536 transfers in one operation.
The PC/AT design expanded the number of DMA channels by using two 8237 DMA Controllers (see
Figure 3-2). Since one channel (Level 4) is used to cascade one controller into the other, and Level 0 is
no longer used for memory-refresh functions, the AT I/O bus provides a total of seven channels, a
considerable increase compared to the original PC bus, especially as six of them are uncommitted.
The two controllers are hardware-wired so that Controller #1 accesses Address Lines A0 - A15 and
can perform up to 65,536 byte transfers on Levels 0 - 3, and Controller #2 accesses Address Lines A1 -
A16 (A0 is permanently set to zero) and can perform up to 65,536 word transfers (128 Kbytes) on even
memory addresses on Levels 5 - 7. The DMA level assignments on the PC/AT are as follows:

DMA LEVEL TYPE FUNCTION

0 BYE Unassigned, general I/O use

1 BYE Unassigned

2 BYE Floppy disk controller

3 BYE Unassigned

4 - Not available (internal cascade)

5 Word Unassigned

6 Word Unassigned

7 Word Unassigned

The PC/ATs internal hardware structure limits byte transfers to Levels 0 - 3 and word transfers to
Levels 5 - 7. It is important to understand that this minor restriction is imposed by the design of the
PC/AT, not by the PDMA-32. If you wish, you may use DMA Level 2 both on the PC and K / A T by
"sharing" it with the floppy-disk controller. This entails either sequentially disabling the floppy
controller and enabling the PDMA-32 or vice versa. Although possible, the additional programming
involved, the requirement that transfers may only be made sequentially on a shared level, and the
availability of so many other free levels seldom make the programming effort involved in using Level
2 worthwhile.

Note also that the PC/AT does not generally use DMA for servicing the hard disk controller. This is
an evolutionary fluke and has resulted from maintaining downward compatibility of the PC/AT's
DMA Controllers structure and speed with the original PC and PC/xT. In the PC the controller is
clocked with the same 4.77 M H z clock used for the main processor. The PC/AT design which started
out with a 6MHz 80286 processor, and presumably for design convenience, the controllers were
driven at half the main processor clock rate or 3 MHz. This meant that transfers would be a little
slower than on a PC and insured backward compatibility with all the earlier PC adapters and
peripheral devices. As processor clock speeds have risen, 8 - 10 -12 - 16 MHz and now 20 - 25 MHz
and higher speeds, most manufacturers have played safe by maintaining the original convention of
clocking the DMA Controllers with a separate 3 MHz clock, although there are a few exceptions to this
practice on some clones (consult your technical manual). The net result of this is that a transfer takes
about 60% longer on a PC/AT than a PC. If you are moving a word on each transfer, the throughput

c - 4

r

APPENDIX C: UNDERSTANDING DMA

Figure 3-1. PC/AT DMA Controller Arrangement

PC/AT D.M.A. CONTROLLER

ARRANGEMENT (S I M P L l F I ED)

c - 5

PDMA-32 USER GUIDE

C.4 THE 8237 DMA CONTROLLER
This section provides a more detailed description of the Intel 8237 DMA Controller, used on the PC
family. A full description is contained on the 8237 component data sheet available from Intel (Intel
Corp., Lit. Dept., 3065 Bowers Avenue, Santa Clara, Ca. 95051).

Apart from the command register, the 8237 includes several other registers using a total of 16 I/O
addresses. The 8237 interfaces internally with the PC/AT data bus as an 8-bit device, even though
some of its internal registers are 16 bits wide. This means that all 1/0 must be made to the controllers
using 8-bit I/O instructions. On the PC/AT, the word controller, Controller 2, is connected across
address lines A1 - A16 (A0 is not connected) and its 1/0 registers appear at every other address on
even boundaries (in effect, it uses 32 I/O addresses). The I/O addresses of the Byte Controller (#1)
extend from 0 - Fh and the word controller (#2) from CO - DFh. A description of the registers
(identical in both controllers) is as follows:

COMMAND REGISTER - I/O Location 8H or DOH
This is an 8-bit write-only register that controls overall operation of the 8237 as follows:

I
0 - Mernory/Memory Disable
1 - Memory/Memory Enable

0 - Level 0 Address Hold Disable
1 - Level 0 Address Hold Enable

0 - Controller Enable
1 - Controller Disable

0 - Normal Timing
1 - Compressed Timing

- Fixed Priority
1 - Rotating Priority

- Late Write Selection
1 - Extended Write Selection

- DREQ Active High
1 - DREQ Active Low I

0 - DACK Active Low
1 - DACK Active High

BIOS initializes the command registers of both controllers with byte OOH (zero). Since many of the bits
control signal polarity and timing features that must be observed for correct operation of the internal
hardware, it is inadvisable to alter BIOS's initialization of the Command Register Byte after power up
(unless you really know what you are doing!).

C - 6

APPENDIX C: UNDERSTANDING DMA

Key features initialized by the BIOS are

1. Normal Timing, Late Write, and Fixed Priority are selected.

2. The DREQs are set active high, and the DACK's are set active low.

MODE REGISTER - Location OBH or D6H
This is a group of four Write-ody, %bit registers, each one controlling the characteristics of each DMA
channel and selected by the lower two bits of the byte. The bit functions are as follows:

D7 - D6 D5 1 D3 D2 D1 DO
I

0 0 - Channel 0 / 4 S e l e c t
0 1 - Channel 1 / 5 S e l e c t
1 0 - Channel 2/15 Select
11 - Channel 3/7 S e l e c t T 0 0 - Verify Transfer (pseudo Transfer)

0 1 - W r i t e Transfer (From 1/0 T o Memory)
1 0 - Read T r a n s f e r ; (From Memory To 1/01

6 - Address Increment Select
1 - Address Decrement Select

) - Demand Mode Select
01 - Sing le mode select * Controller 1 / C o n t r o l l e r 2
10 - B l o c k mode select
11 - Cascade mode select

A Mode Register is associated with each channel and unlike the Command Register, it can be safely
programmed by the user at least for the unassigned levels. Some explanation of the bit functions
follows:

W & D 1 -

D2&D3-

The two lowest bits select the Mode Register for the channels being
programmed. Make sure these are correct so that you do not
inadvertently operate on the wrong channel.

Control the direction of transfer.

D4- Controls auto-initialization (see below).

D5 -

D6&D7-

The Address Counter in the 8237 can count up or down from its starting
vaIue. This bit sets the count direction.

Control the type of DMA transfer (see below).
00 = Demand mode seIect
01 = Single mode select
10 = Block mode select
11 = Cascade mode select

c-7

PDMA-32 USER GUIDE

If Bit D4 = 0, a DMA transfer starts at the memory address specified in the 8237 Address Register and
proceeds for the number of bytes specified in the Word Count Register. On reaching the specified
word count, the Controller automatically sets the channel mask and any further DREQs are ignored,
terminating the DMA transfer. If D4 = 1, Auto-Initialize Mode is enabled. On reaching the final word
count, the Controller re-initializes the Address Counter with its starting address, so that DMA
proceeds continuously in this mode to a memory buffer area of location specified by the starting
address, and length specified by the word count. On reaching the end of the buffer, transfers continue
at the beginning of the buffer. In effect the buffer is circular in Auto-Initialize Mode. This can be
useful when outputting data of a cyclic nature such as driving a D/A Converter to generate a periodic
waveform or when streaming data to/from disk.

D6 and D7 control the DMA transfer modes. BIOS initializes D6 and D7 on every channel to select the
Single Transfer Mode. In this mode, each DREQ will result in a single byte transfer of data followed
by return of bus control to the main processor. The PDMA-32 has been designed for operation of the
DMA Controller in this mode and this is the only valid selection. The Block and Demand Modes are
almost similar to each other. In Block Mode, a single DREQ will make the DMA Controller perform
multiple transfers, one after another until the final word count is reached. Once the DMA process
becomes active, the DREQ can be taken low without affecting continuation of the DMA block transfer
(that is, the DREQ is ignored once transfers start). Demand Mode is simiIar except that the transfers
can be halted at any time during the block transfer by taking DREQ low. Transfers will continue from
the point where they stopped on taking DREQ high. Both of these transfer modes can block the
processor's use of the bus for extended times and may hold off service of other DMA channels while
they are active. Since the use of Block and Demand Modes was not allowed for in the original KYAT
design, it is inadvisable to try using them as they may produce system probIems. In any case the
PDMA-32 has not been designed to support them. Cascade Mode allows connection of another 8237
Hold Request and Hold Acknowledge signals to the DREQ and DACK of the first DMA Controller.
On the PC/AT, Level 4 of the primary controller is used for cascade expansion in this way and is
programmed by the BIOS accordingly.

MASK REGISTER - 110 locations OAh/OFh or D4h/DEh
Each channel has associated with it a Mask Bit that may be set to disable the incoming DREQ. A Mask
Bit is also set when not in the Auto-Initialize Mode by the terminal count, T/C, produced at the end of
the DMA transfer. The Mask Register, including all the Mask Bits for all the channels, may be written
to as a whole through the port at I/O location OFh (Controller #1) or DEh (Controller #2). Apart from
initializing the DMA Controller, which the BIOS performs on power up, it is best to avoid this method
of setting and resetting Mask Bits, since you may disturb the Mask Bit on another channel
inadvertently as the Mask Register is writeonly and its current contents are impossible to read.

The I/O locations at address OAh (Controller #1) or D4h (Controller #2) provide a better way of
setting and dearing a specific channel mask register bit without disturbing the mask bits of the other
DMA channels. The protocol for doing this is as follows:

D7 D6 D5 D4 D3

Don't care
I

D2 D1 DO
I

0 0 - S e l e c t L e v e l 0 / 4 Mask B i t
01 - Select L e v e l 1/51 Mask Bit
10 - S e l e c t L e v e l 2 / 6 Mask Bit
11 - S e l e c t L e v e l 3 / 7 Mask Bit

0 - C l e a r Mask Bit (Enable DMA)
1 - Set Mask Bit (Disable DMA)

C - 8

APPENDIX C: UNDERSTANDING DMA

Before performing any setup of the DMA ControIler, set the Mask Bit of the level being programed
to disable any spurious DMA transfer that might otherwise occur.

ADDRESS REGISTERS - Location (2 x Level #) or COh + (4 x Level (# 4))
There are four %bit read/write address registers in each controller, one associated with each DMA
level. The address register should be loaded with the offset of the starting address of the memory
buffer area reserved for DMA. Since these are &bit registers, they are loaded by two sequential
outputs to the same 1/0 port. An example (in BASIC) for LeveI 3 is as follows:

OUT 6 , Low byte of address
OUT 6 , H i g h byte of address

If you are programming in Assembly Language, you must insert a delay between back to back IIO
instructions when using 80286/386 processors . This is to allow sufficient recovery time for the 1/0
bus (see IBM Technical Reference Manual). Failure to insert a delay will lead to erroneous reads and
writes and erratic results. A short jump provides an adequate delay. Also, since the 8237 uses an
internal byte pointer flip-flop to sequence the low byte / high byte reads and writes, it is important
this is cleared prior to a read or write operation and is not altered by an interrupt during execution of
your code. The byte pointer flipflop is cleared by writing any data to 1/0 address OCh for Byte
Controller #1 or D8h for Word ControIler #2. The following Assembly Language example shows
loading the Address Register of Level 5 including all the correct precautions and steps:

MOV AX,DATA
CLI
OUT ODBH,AL
JMP $+2
OUT OC4H,AL
MOV =,AH

OUT OC4H,AL
STI

m $+2

;get address data t o load i n AX
;disable interrupts
;clear byte pointer f l ip- f lop
;I/O delay (recommended)
; w r i t e low byte
;transfer high byte to AL
;I/O delay (required)
; w r i t e high byte
; re-enable interrupts

The address read back from the Same location is the current address (the starting address plus or
minus the number of DMA transfers, depending on whether increment or decrement is selected by the
mode register).

TRANSFER COUNT REGISTERS - Location (2 x Level#)+l
or COh+(4 x Level (#-4)+2)

There are four 16-bit Transfer Count Registers (called Word Count on the Intel data sheet) that control
the number of DMA transfers. These registers are loaded with the number of transfers required in an
operation minus one. The registers decrement through zero and on reaching FFFFh generate a
terminal count, T/C, on the expansion bus. In the non-auto initialize mode further DMA
automatically masks off and further transfers cease, whereas in the AuteInitialize Mode both the
Transfer Count and Address Registers are automatically reloaded with their initial values and DMA
proceeds continuously. The combination of the T/C (terminal count) 1/0 bus signal and the DACK
for the selected DMA level can provide an interrupt to signal the end of the DMA transfer. The

c-9

PDMA-32 USER GUIDE

PDMA-32 can generate this type of interrupt on any level if required. Other methods of determining
if the DMA transfer has ended is to poll (read) the Controller Status Register (I/O address 8h
Controller #1 or W h Controller #2) or read the Transfer Count Register untiI it has reached FFFTh.
This latter method also provides data on the number of DMA transfers that have taken place and is
the method used by Mode 2 of the PDMMZBIN driver.

STATUS REGISTER - Location 8h or Doh
The DMA Controller Status Register provides information on whether a channel is active and whether
a DMA transfer has finished, as follows:

D7

I
I
I
I
I
I

D6 D5 D4 D3 D2 D1 DO
I
1 = Level 0/4 DMA process done.

1 = Level 1/5 DMA process done.

I
1 = Level 2 / 6 DMA process done.

I 1 I I
I I 1 I

I I 1
1 I

I

1 = Level 3/7 D m process done.

1 = L e v e l 0/4 DMA requested.

1 = L e v e l 1/5 DMA requested.

i = Level 2/6 DMA requested.

i = Level 317 DMA requested.

BYTE POINTER FLIP-FLOP - Location OCh or D8h
When reading or writing any of the 16-bit internal registers of the 8237 (the Address or Transfer Count
Registers) that involve doubIe 8-bit sequential I/O operations to the same 1/0 address, the 8237 uses
an internal sequencing flip-flop to select the low- and high-byte portions of the register. It is advisable
to clear this flip-flop before one of these doublebyte read or write operations so that data is sequenced
in the correct order. Writing any data to 1/0 addresses OCh (Conkoller #1) or D8h (Controller #2)
clears the byte pointer flipflop.

C.5 THE DMA PAGE REGISTERS
The 8237 DMA Controller is an older peripherai device that was designed to work with a 16bit
address bus which these days is adequate only for controlling a small portion of the total addressable
memory. The original PC used a 20-bit address bus for the 1 Mbyte of RAM, and for ROM memory
allowed in the PC architecture, the PC/AT provides a 24-bit address bus to address a physical
maximum of 16 Mbytes of memory. It is therefore only possible to perform DMA within a 16-bit
addressable area of memory at a time. This area is termed a Page and for the Byte Controller
amounts to 64Kbytes of memory; for the Word Controller, it is 128 Kbytes as AO, the least significant
address byte, is always zero. The Page Address is provided by a set of 8-bit registers (4-bit on the
original PC) external to the 8237 DMA Controllers. There is a register for each DMA level except
Internal Level 4. The Byte Controller #1 provides bits A0 - A15 of the address and the Page Register
provides the remaining address bits, A16 - A23. The Word Controller #2 provides bits A1 - A16 of the

c-10

APPENDIX C: UNDERSTANDING DMA

address, the Page Register provides bits A17 - A23; the Least Significant Bit of the Word Page
Registers is ignored and the Least Significant Bit of the address bus (AO) is set to zero so that word
transfers for Levels 5 - 7 may be made only on even address boundaries.

It i s important to understand that although the Page Register supplements the DMA Controller to
provide the full 24-bit address, there is no way that the address generating counter in the 8237 can
propagate a carry/borrow into the Page Registers. This leads to an important programming
precaution: always be sure that your transfer count plus your base memory address will not take you
across a page boundary. If this situation occurs, since the page address does not increment, you will
get a wraparound to the beginning of the page which more often than not will overwrite some
essential program memory and crash the computer!

The 8-bit Page Registers may be read/write or write only registers, depending on the type and design
of your computer. The Page Register locations and functions are as follows:

IIO LOCATION FUNCTION

87h
83h
81h
82h
8Bh
89h
8Ah

Level 0 Page Register
Level 1 Page Register
Level 2 Page Register
Level 3 Page Register
Level 5 Page Register
Level 6 Page Register
Level 7 Page Register

Note that there is no simple relationship between the Page Register 1/0 address and its associated
DMA level; this just makes programming a little more of a challenge!

C.6 SETTING UP A DMA TRANSFER
Setup of a DMA transfer entails several steps which must be performed in the correct sequence. The
process also requires a good understanding of the action of the hardware. Mode 1 of the
PDMA3ZBIN driver performs this setup and avoids a Iot of programming, the source listing of Mode
1 (see PDMA32.ASM) provides an example of the Controller setup. If you do not want to use the
driver and wish to write your own setup program you should proceed in the following sequence:

1. Disable any active DMA on the chosen level by setting the appropriate Mask Register Bit or
alternatively wait for the transfer to finish.

2. Write to the appropriate mode register of the appropriate 8237 DMA Controller to set up the
transfer characteristics.

3. Clear the byte pointer flip-flop and disable interrupts (clearing interrupts in a high level language
may not be possible - you can take your chances or use the driver).

4. Load the Address and Byte Count Registers with appropriate data.

5. Re-enable interrupts.

6. Write the Page Register to select the DMA page.

7. If you intend to make use of a Terminal Count Interrupt to signal the end of DMA, then install
your Interrupt Handler (set Interrupt Vector and 8259 ControlIerts)).

c - 11

PDMA-32 USER GUIDE

8. Set the PDMA-32 to operate on the DMA and interrupt levels selected by writing the level
numbers to the PDMA-32 DMA and Interrupt Level Select Registers and then enable DMA and
interrupts from the PDMA-32 using its DMA and Interrupt Control Registers.

9. If you are using the PDMA-32's on-board timer to generate DMA transfer requests, it is a good
idea to reload it so that the first DMA transfer will occur at a fixed delay from this point. An
excellent technique is to load the timer with the largest division ratio possible which will produce
a pulse every 7 minutes - in effect disabling the timer. The timer can later be set to its desired
speed after all the DMA and interrupt setup is completed.

10. Enable 8259 Interrupt Controller(s) Mask Register (if using interrupts).

DMA transfers, now is the point to bring it up to correct speed (see Step 9).
11. Last step: enable DMA Controller Mask Register. If you are using the on-board timer to pace

The main pitfall when doing the DMA setup is enabling the 8237 DMA Controller before DUA is
enabled on the PDMA-32 through bit 7 of the DMA Control Register. Until the PDMA-32 is enabled,
the DREQ line is tri-state OT high impedance and picks up a lot of crosstalk from other lines on the
expansion bus. If the 8237 Mask Register Bit is enabled, many spurious rapid DMA transfers will be
generated, and it is not unusual to find that the 8237 signals that transfers are ended before the
PDMA-32 is later enabled! Always enable the PDMA-32 first followed by enabling the 8237 controller.

Another detail not very obvious in the 8237 data sheet is that while a channel is masked off, it will
store a DREQ. As soon as the Channel Mask Bit is cleared (enabled), this stored request gets serviced
and you often get an undesired transfer immediately on enabling the controller. Since you usually do
not know whether there is going to be a stored request pending, in some applications, you may have
to enable the controller and reload the address and Transfer Count Registers with the desired values
and then start up your DMA transfers. Generally if the DREQ bus line input has been left in an open-
circuit or tristate condition, bus crosstalk will have induced enough noise into the line to generate a
pending DMA request. This is usually the condition on making the first set of transfers with the
PDMA-32.

C.7 DMA TRANSFER TfMING
On receipt of a DMG request (DREQ) from a peripheral, the 8237 DMA Controller immediately sends
a HOLD request to the 80286/386 processor. The bus interface unit responds to the HOLD as soon as
possibIe according to the foIlowing rules:

1. The response is close to immediate if no bus cycle (transfer to or from memory or I/O) is in
progress. This time can be as little as 0.1 microseconds.

2. If a bus cycle is in progress, it will be completed before Hold Acknowledge is enabled. In this
case, a processor-clock-sp-dependent delay of 200 - 6OOns (nanoseconds) may take place.
Memory wait states will add to this delay.

3. If a bus cycle involving a word (2 byte) transfer to an odd byte memory boundary is taking place,
both bus cycles will be completed before Hold Acknowledge is enabled, In this case the delay can
extend beyond a microsecond.

Acknowledge can be delayed somewhat in excess of 13 processor clock periods, 1 - 3
microseconds.

4. If the Hold Request occurs at the beginning of an Interrupt Acknowledge Sequence, then Hold

c-12

APPENDIX C: UNDERSTANDING DMA

5. If an instruction is executed with a LOCK prefix, the bus interface unit will insure that the whole
following instruction will be executed before issuing a Hold Acknowledge. In the case of
instructions that require several memory references during execution (ADD [BX],CX) this could
add many microseconds of delay.

In general, Condition 5 is unlikely to arise since the LOCK prefix is used by programers to insure
total instruction execution in multiprocessor systems, and the PC/AT is a singIe-processor system
There is therefore no reason for a programmer to use the LOCK prefix in programs for the FC, though
of course there is nothing to prevent its use.

Once the DMA transfer is under way, the DMA Controller will take five clock cycles or 1.7
microseconds (3MHz clock) to effect the transfer. Assuming that instructions are not LOCKed, the
worst-case transfer timing would appear to be Condition 4 plus the DMA cycIe time, around 4
microseconds. This neglects the effect of higher-level DMA channels which, if active and requesting
service, can extend the delay. The technical term for this service delay is DMA latency.

A practical method of measuring the latency is to set the PDMA-32 up in Auto-initialize Mode with
the DMA requests driven by the timer, which should be run at a pulse rate of a few KHz. You may
synchronize a scope from the timer pulse output (Pin 22) the positive edge of which generates the
DREQ. If you examine the XFER. ACK. (Pin 31, it goes low on the start or positive edge of the DREQ
and rises back to a high state on completion of the DMA transfer at the end of DACK. The trailing
edge will appear as a blur on the scope, and the bIur extends anywhere from 2.5 to somewhat less
than 5 microseconds from the start of the pulse. This corresponds to the best- and worst-case DMA
transfer times. You will notice that the majority of transfers occur in 2 to 3 microseconds.

There are a number of conclusions that can be drawn from these numbers. If you are performing
clocked DMA transfers (regulated by the timer), it will limit transfer speeds to the worst-case delay
time corresponding to about 200,OOO transfers-persecond. Note this applies whether you are
transferring bytes (Levels 0 - 3) or words (Levels 5 - 7) so the corresponding data rates are 200,000
bytes/= or 200,000 words/sec (4400,000 bytes/sec.). If you are able to use the XFER, REQ. and
XFER. ACK. to handshake with the peripheral and the peripheral can provide data as fast as it can be
transferred, you will no longer be limited by the worst-case transfer time and you can expect speeds of
up to 350,000 transfers/sec+

C.8 USING INTERRUPTS WITH DMA
The PDMA-32 can generate a hardware interrupt on any of the 11 PC/AT levels available on the bus.
These are levels from 3,4,5,6,7,9,10,11,12,14 & 15. The interrupt can be generated from one of the
following three sources:

1. An external positive or negative edge input on the INTERRUPT IN (Pin 1).

2. A periodic interrupt from the timer.

3. A terminal count (T/C) from the DMA Controller.

This provides several options in programming. The DMA Terminal Count Interrupt can be used to
signal the end of a DMA transfer and start up another operation (another DMA transfer) or move data
from the DMA buffer to be processed, etc. The external interrupt can be supplied by an external
device that requires DMA service, or to signal that it has transferred all its data, etc. The periodic
interrupt can be used to perform some repetitive operation like sending a block of data to a peripheral.

C-13

PDMA-32 USER GUIDE

Since there are many possible actions that a user may require from an interrupt service routine, it is
impossible to provide a ready-made, all-purpose routine. The PDMA32.BIN driver does include a
sample interrupt service handler (labelled INTH:) that can be installed and enabled using Mode 7 and
disabled with Mode 8. This particular routine generates an audible "beep" every time it is invoked
(run INT.BAS for a sample). A programmer can readily modify the handler to his own needs and
reassemble the PDMA32.ASM source. Note that most high-level languages, including BASIC, do not
provide a means of writing an interrupt service routine, and it has to be done through the driver as
described. Modes 7 and 8 provide examples of performing the set up of the PC/AT's 8259 interrupt
controllers on any level which is fairly complex. One further precaution, when you write intempt
handlers: avoid using DOS calls within them, since most Dos 4 s are not reentrant. Your program
can be in the middle of using a DOS call when it is interrupted, and if your handler happens to use the
same or similar DOS call, things get altered in strange ways and programs crash! This mistake can
lead to difficult to diagnose, randomly appearing bugs, so be aware of it.

C.9 DETERMINING STATUS OF A DMA TRANSFER
Once a DMA transfer is under way, it is often necessary to find out how many transfers have taken
pIace or whether the DMA transfer has completed. This can be determined by reading the
appropriate byte count register of the 8237 DMA Controller. For example,

1OXL% = INP(7) 'low byte for l eve l 3
20 XH% = INP (7) 'high byte for level 3
30B = 256 * XH% + XL% 'B = number of transfers l e f t to complete

Alternatively, Mode 2 of the PDMA32.BIN driver will perform a similar function, returning the
number of bytes or words transferred according to the setup of Mode 1.

...

C - 1 4

APPENDIX D

MODES 9 & 10: ALLOCATE/DEALLOCATE DMA
BUFFERS

D.l OVERVIEW
This appendix explains the method to be used to allocate a suitable block of memory for DMA
transfers. The "memory allocation" modes (Modes 9 and 10) supplied with the software driver wilI
work in the majority of programming languages including C, PASCAL, FORTRAN, and QuickBASIC
that are compiled from the DOS command line. The same method used in the driver may work for
other languages according to the following guidelines.

The first step for allocating memory suitable for DMA transfer is to allocate the number of bytes that
are actuaIly needed. In a DOS environment, all allocation and deallocation of memory is handled
through the INTERRUPT 21 FUNCTION 48 (Allocate Memory Block) and FUNCTION 49 (Release
Memory Block). After allocating this initial block of memory, a check is performed to see if the entire
block falIs in the same DMA PAGE. If the block is completeIy in one PAGE (i.e, the sum of the BYTE
COUNT and the DMA OFFSET is less than or equal to FFFFh), then no further action is necessary and
this block can be passed to the DMA MODE of the driver. If, however, the block of memory is not all
on the same DMA PAGE, extra steps are necessary. The first of these steps is to release the previously
alIocated memory. Once this memory is released, twice as much memory as is actually needed is
allocated. Upon successful compIetion of this second allocation a suitable block of memory has been
obtained and all that is left to do is determine the OFFSET within this block to be sent to the DMA
MODE.

NOTE Although the SEGMENT Address of the dlocated memory may not be the ADDRESS
sent to the DMA MODE, it should be saved as it is needed when DMA is complete and
the block is released back to DOS.

72EO : 0 U
7000: 0

1 62E0 : 0

6 0 0 0 : 0

"Good"
64K Block

Actual Memory
Allocated On
Second Attempt

128K

Original
" Bad 'I

64K B l o c k
52EO : 0

D - 1

PDMA-32 USER GUIDE

The preceding diagram illustrates the memory usage for this allocation scheme, using a desired byte
count of 64 KB. The original aIlocated block (from 52EO:O to 62EO:O) crossed a page boundary at
6OOO:O. After .the original bIock was released, twice as much was allocated, resulting in the actual
block that starts at 52EO:O and ends at 72E00. The actual memory block crosses two page boundaries
(6ooo:O and 7000:O) and there is now a complete page of memory accessible by the DMA controller.
After storing the SEGMENT 52EO for the purpose of releasing the memory when it is no longer
needed, the segment 6OOO can be sent to the DMA mode of the driver and 64KB can be transferred.

Using this method to allocate DMA buffers works for buffer sizes up to 64KB as long as there is a
sufficiently large bIock of memory available in your system.

The foIlowing sections demonstrate how to set up for and make the calls to the appropriate memory
allocation modes from different programming languages. When programming language specifics
make other modifications necessary, they are included in the example code and/or description. Some
programming languages are not compatible with the memory allocation modes for various reasons;
alternative solutions are provided for these cases.

D.2 LANGUAGE SPECIFIC SOLUTIONS & EXAMPLES
The examples in this section use PDMA-32 MODE CALLS MODE 1, MODE 9, and MODE 10. These
modes are described in Chapter 5.

BASIC(A)
From inside the interpreted versions of BASIC and BMICA, it is necessary to choose a memory
location that is above the BASIC(A1 workspace as a starting SEGMENT for DMA transfers. Using a
debugger or a memory-mapping utility can help when deciding on a memory location. If you do not
have one of these utilities and you do not have a large number of resident programs, use an address of
&H5000 or above. Remember to choose a segment value that will allow the required number of bytes
to be transferred in the same DMA PAGE (for example, kH5000, &H6000).

Example:

430 DMASEG = &H6000

440 '

450
460
470
480
490
500
510
520
530
560
580

1 ---- Setup and Perform DMA
MD% = 1
D % (O) = 5000
D % (l) = 0
D % (2) = 0
D % (3) = 0
D % (4) = I
D % (5) = DMASEG
D % (6) = 0

1

Transfer (Mo& 1) --------------__
'Select mode
'number of transfers
'don't care
I direction
'auto-recycle
'transfer source
'SEGMENT address to transfer to
'DMA OFFSET

590 CALL PDMA32 (MD%, D%(O), FLAG%) 'set DMA running
600 IF FLAG% <> 0 THEN PRINT "Error i n DMA setup #"; FLAG%: stop

D - 2

APPENDIX D: MODES 9 & 10: ALLOCATUDEALLOCATE DMA BUFFERS

D.3 MICROSOFT QUICKBASIC *
When executing a QuickBASIC application from the command line, use Mode 9 to allocate memory
for DMA. Use Mode 10 to deallocate the memory when DMA is finished and the memory is no longer
needed.

When running an application from within the QuickBASIC environment, any d to Mode 9 will
return an INSUFFICIENT MEMORY error because the QuickBASIC environment uses all availabIe
memory. The subroutine address in the second example allocates a suitable memory location for
DMA transfer and returns the address in apb'%.

Example 1
For QuickBASIC stand-alone executable applications executed from the DOS command line:

Allocate memory f o r DMA (M o d e 9) ------------------ 1 ----I

' *** NOTE:
D 3 (0) = 5000
'Number of Transfers:
MD% = 9

CALL QBPDMA32 (MD%, VAF@TR(D% (0)) , FLAG3) 'Allocate memory
I F FLAG% <> 0 THEN PRINT "Error in w r y Allocate #"; FLAG% : STOP
ASEG = DO(7)
I*** This value must be used with
'*** Mode 10 to deallocate memory.. .
MD% = 1 'Select mode
D%(O) = 5000 'Number of transfers (must be the same

D3(1) = 0 'Don't care
D 3 (2) = 0 'Direction
DB (3) = 0 'Auto-Recycle
D B (4) = 1 'Transfer source
CALL QBPDMA32 (MI%, VARPTR(D3 (0)) , FLAG%) 'Set DMA running
I F FLAG% <> 0 THEN PRINT "Error in DMA setup #"; FLAG% : STOP

This mo& can only be used from an executable file.

1 ----- Setup D m transfer Mo& 1 __________________-_- -

'as allocated in Mode 9) :

1 ------ Deallocate Memory Back to DOS (Mo& 10) -------
D%(O) = ASEG ; actual segment allocated using Mode 9
MD% = 10

CALL QBPDMA32 (MD8, VARFTR (D% (0)) , FLAG%) 'set timer
IF FLAG% <> THEN PRINT "Error in releasing Memory #" : FLAG% : STOP

Example 2
For QuickBASIC applications executed from within the QuickBASIC environment:

NOTE: This application may be done only if using Byte Transfers DMA Levels 0-3.

'Declare the Subroutine to Calculate the useable address for DMA
'NOTE:
'DECLARE SUB ADDRESS (DMA() AS LONG, samp AS LONG, a&%)

All subroutine DECLAF!Es must be before any $DYNAMIC arrays!..

D - 3

PDMA-32 USER GUIDE

RE24 $DYNAMIC

DIM DMA(32766) AS LONG

DIM samp AS LONG
SAMP = 32766

CALL ADDRESS (DMA() , samp,
addx = &I3300
1 ------ Setup DMA transfer
MD% = 1
D % (O) = Samp
D % (1) = 1
D % (2) = 0
DS(3) = 0
D % (4) = 1
~%(5) = aptr%
D % (6) = 0

aptr8) 'CnLL SUB TO CALC. DMA ADDRESS
' ~ ~ m - 3 2 1/0 address

'select made
'Number of transfers
'Don't Care
'Direct ion
'Auto-Recycle
'Transfer Source

(Mo& 1) --_-_------

'DMA O f f s e t

CALL QBpDMA32 (BID%, VARPTR (D% (0)) , FLAG%) 'set DMA running
I F FLAG% <> 0 THEW PRINT " E r r o r i n DMA setup #"; FLAG% : STOP

SUB ADDRESS (DMA() AS LONG, S a m p AS LONG, addr%)
I

SUBROUTINE TO ALLOCATE SPACE FOR DMA TRANSFERS
I

DIM a AS LONG
DIM b AS LONG

CLS
s = VARSEG(DMA(0))
o = VARPTR(DMA(0))

'GET SEGME" =DRESS
'GET SEGMENT OFFSET

IF 0 < 0 THEN 0 = 0 + 65536
IF s < 0 TEEN s = s + 65536
a = s * 1 6 + o
PAGE = INT(a / 65536) 'See i f there will be a DMA "WRAP-AROUND"
b = a - (PAGE 65536)
b = b + samp * 2

I F b < 65535 THEN
a = (PAGE + 1) * 4096: 'here i f PAGE WRAe would QCCUZ
I F a > 32767 THEN

ELSE

ENDIF

a = INT (a / 16)
I F a > 32767 THEN

a&% = a - 65536

a&% = a

ELSE

a&% = a - 65536
ad&% = a

ELSE

ENDIF
ENDIF

END SUB

D.4 MICROSOFT QUICK C OR BORLAND TURBO C
When executing a program from within Borlands TURBO C or Microsoft's Quick C, the environment
uses a large portion of your Pc's free memory. This memory usage can limit the amount of memory

0 - 4

APPENDIX D: MODES 3 & 10: ALLOCATUDEALLOCATE DMA BUFFERS

available for DMA buffer space. If a "Memory Allocation Error" is returned after a call to the
"Memory Allocation for DMA" Mode, you must take alternative action.

One option for limited memory is reducing the number of samples, thus reducing the size of the
required memory block. If the number of samples is already at the minimum and there is still
insufficient memory for allocation, another option may be necessary.

A second option is compiling and linking the program into a stand-alone executable file and executing
it from the DOS command line. If you normally program within an environment and find that your
application must be compiled and executed outside of the environment, the following may be useful:

1. Test the program from within the environment by taking fewer samples so as not to exhaust your

2. After successfully testing the program from within the environment, increase the number of

PC's memory.

samples as necessary, then compile and link the application into an executable file.

The next two sections provide examples for each of these languages.

Microsoft C Example
Using Version 4.x, 5.x, or 6.0 Microsoft C Compiler, use Mode 9 to allocate memory for DMA and
Mode 10 to deallocate memory after DMA is finished and the memory is no longer available. For
example,

/* Allocate Suitable Block of Memory fo r DMA */
mode = 9
/ * a l loca te memory f o r DMA */
params[O] = 40000
/ * a l loca te 40000 bytes/words */
mscm_Pmaa32 (&mo&,params, &flag)
/ * Microsoft C medium model Mode c a l l */
if (f lag != 0)
/ * Error if f l a g is not zero */
I

pr in t f ("\n\nMode 9 Error Flag = %d/n", flag) ;
exit (1) ;

l

actual-seg = params 171
/*Save actual segment f o r later deallocation w i t h mode 10 */
dma seg = params[5]
/* Tgood" segment fox DMA Mode 1 */
/*Set Up f o r Call t o Mode 1:

mode = 1
/* S e t up and Perform D m */
params[O] = 40000
/* number of bytes */
params[l] = 0
/* value does not matter */
paramst21 = 0
/* input */
paramsC31 = 0
/* auto-recycle off */
params141 = 1
/*transfer clock source = timer */
params151 = h - s e q
/*Transfer segment already set if Mode 1 cal led immediately after Mo& 9 */
paramsC61 = 0

S e t Up and Perform DMA Transfer */

D - 5

PDMA-32 USER GUIDE

/*Dm Offset: also set by Mode 9*/
mscm~dma32 (&mode, params, 6flag)
/* Microsoft C medium mode Mode call */
if (flag! = 0)
/ * Error if flag is not is not zero */
{

1

printf ("\n\nMode 1 Error Flag = %d/n", flag) :
exit (1) ;

/* Release Memory Back to DOS when Finished */
mode = 10
/* Deallocate memory */
params [O] = actual-seg
/* segment to release */
m s c m p 3 2 (&mode, params, &flag)
/* call driver */
if (flag !=O)
/* E r r Q r if flag is not zero * /
I

I

printf ("\n\nMode 10 Error Flag = %d/n", flag);
exit (1) ;

BORLAND TURBO C Example*
/* Allocate Suitable Block of Memory for DMA * /
mode = 9
/* allocate memory for DMA */
params[O] = 40000
/* allocate 40000 bytes/words */
tcm-32 (hmode,params, &flag)
/* TURBO C medium model M o d e call */
if (flag != 0)
/* Error if flag is not zero */
I

1

actual-seg = params 171
/*Save actual segment for later deallacation with mode 10 */
dm-seg = params[5]
/* "good" segment for DMA Mode 1 */
/*Set Up for Call to Mode 1:

mode = 1
/* Set up and Perform DMA * /
params[O] = 40000
/* number of bytes */
params[l] = 0
/* value does not matter */
params[2] = 0
/* input */
params[3] = 0
/* auta-recycle off */
params[4] = 1
/*transfer clock source = timer */
params [5] = dma-seg
/*Transfer segment already set if Mode 1 called inmediately after mde 9 */
params[6] = 0
/*DMA Offset: also set by Mode 9*/
ta-32 (&mode, params, &flag)

printf("\n\nMode 9 Erro r Flag = %d/n", flag);
exit (1) ;

Set Up and Perform DMA Transfer */

D - 6

APPENDIX D: MODES 9 & 10: ALLOCATUDEALLOCATE DMA BUFFERS

/* TURBO C medium mode Mode cal l * /
i f (flag! = 0)
/* Error i f f lag i s not is not zero */
I

1

printf ("\n\nMode 1 Error Flag = %d/n", f lag) ;
exit (1) ;

/* Release Memory Back t o DOS when Finished */
mode = 10
/* Deallocate memory */
params 101 = actual-seg
/* segment to release */
tm-32 (&mode, params, &flag)
/* call driver */
if (flag !=O)
/* Error i f f lag i s not zero */

printf ("\n\nMo& I0 Error Flag = %d/n", f lag) :
exit (1) ;

1

D.5 TURBO PASCAL
Using TURBO PASCAL Compiler Versions up to and including 6.0, work with Mode 9 to allocate
memory for DMA and Mode 10 to deallocate the memory, when DMA is finished and the memory is
no longer needed.

TURBO PASCAL allows the user to specify the memory requirements for a program with the
"Memory Allocation Sizes" parameter directive $M. The $M directive allows specification of the
stacksize and the minimum-and-maximum heap size using the syntax { $M s t acks i ze,
heapmin, heapmax}.

When specifying a minimum and maximum heapsize for a program that calls the Allocation Mode
within the software driver, it must be insured that TURBO PASCAL does not use all available
memory. If the maximum heapsize is not set by the user, TURBO PASCAL uses all of the remaining
memory for its internal heap. The Memory Allocation mode of the software driver can acquire
memory only from DOS, if the $M directive is used to force TURBO PASCAL not to use up all
available memory.

The limits for stacksize, heapmin, and heapmax are as follows:

PARAMETER MINIMUM MAXTMUM

stacksize 1024 65520
heapmin 0 655360
heapmax heaprnin 655360

For further information regarding the "Memory Allocation Sizes" Parameter Directive, refer to the
TURBO PASCAL manual.

D - 7

PDMA-32 USER GUIDE

Example
ISM 16384,0,1310721

BEGIN
(* Allocate DMA Buffer Using Mode 9 *)
mode := 9;

params[O] := 40000;

tp-32 (&mode, params, &flag) ;

if (flag <> 0) then

begin
write ("Mode 9 Error Flag = I) ;
writeln (flag) ;
halt :

(* allocate nemory for DMA *)

(* allocate 40000 bytedwords *)

(* TURBO P A S W mode c a l l *)

(* E r r o r if flag is not zero *)

(* Halt program execution *)
end;
dma-seg : = params [61 ;
actual-seg : = params [7] ;

(* save DMA "good" segment *)
(* save actual segment for later *)

(* Set up and perform DMA transfer using Mode 1 *)
mode := 1;

(* Set Up and Perform DMA *)
params[O] := 40000;

(* number of bytes *)
paramsCI1 := 0;

(* value does not matter *)
params[2] := 0;

(* input *)
paramsC31 := 0;

(* auto-recycle off *)
params[4] := 1;

(* transfer clock source = timer *)
params[5] := dma-seg;

(* Transfer segment: already set *)
(* i f Mode 1 called immediately *)
(* after Mode 9 *)
params[6] := 0;

(* DMA Offset: also set by Mode 9 *)

tp_pdma32(&mode,pararnsr&flag); (* TURBO PASCAL mo& call *)
if (flag <> 0) then
begin
write ('Mode 1 Error Flag = ') ;
writeln (flag) ;
halt (* Exit to DOS *)
end;

(* Releases Memory back to DOS using M o d e 10 *)
mode := 10;

params [01

tp-32 (&mode, paraxis, &flag) ;

(* Deallocate memory *)

(* Segment to release *)

(* Call driver *)

: = actual-seg;

D - 8

APPENDIX D: MODES 9 & 10: ALLOCATBDEALLOCATE DMA BUFFERS

i f (f l ag <> 0) then
begin
w r i t e (“Mode 10 Error Flag =) ;
writeln (f lag) ;
h a l t (* Exit to DOS *)
end;

END.

D.6 MfCROSOFT PASCAL
Using Microsoft PASCAL Compiler Versions up to and including 4.0, work with Mode 9 to allocate
memory for DMA and with Mode 10 to deallocate the memory, when DMA is finished and the
memory i s no longer needed.

Exa rn pl e
mode := 9;

params[O] := 40000;

msp_pdma32 (&mode, params,&flag) ;

i f (flag <> 0) then

begin
w r i t e (“Mode 9 Error Flag = I) ;
writeln(f1ag) ;
&*(0)

(* a l loca te memory f o r DMA *)

(* a l loca te 40000 bytes/words *)

(* MICROSOFT PASCAL mode c a l l *)

(* Error i f f l a g is not zero *)

(* E x i t to DOS *)
end:
dma_seg := params [61 ;
actual-seg := params[71;

(* save DMA “good” segment *)
(* save actual segment for l a t e r *)
(* deallocation with Mode 1 0 *)

(* S e t up f o r c a l l to Mode 1:
mode := 1;

(* Set Up and Perform DMA *)
params[O] := 40000;

(* number of bytes *)
params[l] := 0;

(* value does not matter *)
params[2] := 0;

(* input *)
paramsC31 := 0;

(* auto-recycle off *)
params[4] := 1;

(* t r ans fe r clock source = timer *)
paramsC51 := dma-seg;

(* Transfer segment: already set *)
(* if Mode 1 cal led isnaediately *)
(* after Mode 9 *)

params[6] := 0;
(* DMA Offset: also set by Mode 9 *)

Setup and Perform DMA t r ans fe r *)

D - 9

PDMA-32 USER GUIDE

msp_pdma32 (&mode,params, &flag) ;
begin
w r i t e ('Mode 1 E r r o r Flag = ') ;
writeln (flag) ;
abort (0) (* Exkt t o DOS *)
end;

(* MICROSOFT PASCAL mode c a l l *)

(* Releases m r y back t o DOS using Mode 10 *)
Illode := 10;

params [01 := actual-seg;

msp_edma32 (&mode, params, &flag) ;

begin
w r i t e ("Mode 10 Error Flag =) ;
writeln (flag) ;
abort(0) (* E x i t t o DOS *)
end;

(* Deallocate m r y *)

(* Segment t o release *)

(* Call driver *)

END.

D.7 MICROSOFT FORTRAN
Using Microsoft FORTRAN Compiler Versions up to and including 5.0, work with Mode 9 to allocate
memory for DMA and with Mode 10 to deallocate the memory, when DMA is finished and the
memory is no longer needed.

Example
mode = 9
i(1) = 40000

C Allocate DMA buffer using mode 9

call msf-32 (mode, i (1) , Flag)
i f (f lag .NE. 0) then
print *, 'Mode=',mode,' Erro r# ' , f lag

endif
dmaseg = i (7)
actseg = i(8)

got0 35

C Set Up and Perform DMA Transfers
mode = 1
i(1) = 40000
i(2) = 0
i (3) = 0
i (4) = 0
i (5) = 1
i (6) = dmaseg
i (7) = 0
f lag = 0

call msf-32 (mode, i (I), Flag)

i f (f lag .NE. 0) then

D - 1 0

APPENDIX D: MODES 9 & 10: ALLOCATUDEALLOCATE DMA BUFFERS

print *,‘Mode = ‘,mode, Error #‘, f lag
goto 35
endif

C Free DMA buffer using Mode 1 0
mode = 1 0
f lag = 0
i(1) = actseg

c a l l msf_pdma32(mode, i(l) , Flag)

i f {f lag .NE. 0) then
print *, ‘ M o d e = I , mode, Error #I, flag

endif
goto 35

35 end

...

D - 1 1

APPENDIX E

STORAGE OF INTEGER VARIABLES

STORAGE OF INTEGER VARIABLES
Data is stored in integer variables (W type) in 2’s complement form. Each integer variable uses 16 bits
or 2 bytes of memory. 16 bits of data is equivalent to values from 0 to 65,535 decimal, but the 2’s
complement convention interprets the most significant bit as a sign bit so the actual range becomes -
32,768 to +32,767 (a span of 65,535) as shown below:

HIGH BYTE
D7 D6 DS D4 D3 D2 Dl DO

+32,768 0 1 1 1 1 1 1 1
+lO,OOo 0 0 1 0 0 1 1 1
+I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1
-10,Ooo 1 1 0 1 1 0 0 0
-32,767 l 0 0 0 0 0 0 0

n

Sign bit (1 if negative, 0 if positive)

LOW BYTE
D7 D6 D5 D4 D3 D2 DI DO
1

1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0

Integer variables are the most compact form of storage for data from the 12-bit A/D converter and 16-
bit data from the 8253 interval timer. To conserve memory and disk space as well as to optimize
execution speed, a11 data exchange via the CALL is through integer-type variables. This may pose a
programming problem when handling unsigned numbers in the range 32,768 to 65335.

Unsigned integers greater than 32,767 require a signed Z’s-compliment format. For example, assume
we want to load a &bit counter with 50,000 decimal. An easy way of turning this to binary is to enter
BASIC and execute PRINT HW(50000). This returns C350 or binary 1100 0011 0101 oo00. Since the
most significant bit is 1, it would be stored as a negative integer and, in fact, the correct integer
variable value would be 50,000 - 45,536 = -15,536. The programming steps for switching between
integer and real variables for representation of unsigned numbers between 0 and 65,535 is therefore:

From real variable N (0 <= N <= 65,535) to integer variable N%:

X X X ~ O IF N<=32767 THEN N% = N ELSE N% = N - 65536

From integer variable N% to real variable N.

xxx20 IF N% >= 0 TEEN N=N% ELSE N = NB + 65536

E - 1

APPENDIX F

PDMA-32 PCF

Instructions
for the

PDMA-32 PCF

Callable Driver

Contents

SECTION F1 INTRODUCTION

F1 . 1 Overview . F.3
F1.2 Supported Languages . F-3
F1.3 Copying Distribution Software . F-3
Fl.4 Writing Your Program. F-4
F1.5 This Manual . F-5

SECTION F2 DRIVER INFORMATION

F2.1 Overview . F.7
F2.2 Driver Source Modules . F-7
F2.3 Drivers . F-7
F2.4 Mode Calls . F-8
F2.5 Calling The Driver . F-8
F2.6 Creating New Drivers . F-10

SECTION F3 DRIVER USAGE

F3.1 Overview . F-13
f3.2 Microsoft Cflurbo C . F-13
F3.3 Microsoft PASCAL . F-15
F3.4 Borland TURBO PASCAL . F-17
F3.5 Microsoft FORTRAN . F-19
F3.6 Microsoft QuickBASIC . F-20

...
F - 1

PDMA-32 USER GUIDE

a

F - 2

APPENDIX F: PDMA-32 PCF

SECTION F1

INTRODUCTION

F1.l OVERVIEW
The PDMA-32 is a software package for programers using Pascal, C, FORTRAN, and QuickBASIC
to write data acquisition and control routines (referred to herein as Application Code 1 for the PDMA-
32. The Distribution Software for this package is normally supplied on 5.25” lowdensity diskettes but
is also available (upon request) on 3.5” diskette(s). Contents of the package include the following:

PDMA-32 Drivers for each of the supported languages

Driver Source Modules for creating new Drivers

Miscellaneous documentation (.DOC) files

Example program files in all supported Ianguages

F1.2 SUPPORTED LANGUAGES
The PDMA-32 supports all memory modules of the following languages:

Microsoft C (V4.0 - 6.0)

Microsoft Quick C W . 0 - 2.0)

Microsoft Pascal W3.0 - 4.0)

Microsoft FORTRAN (V4.0,4.1) . Microsoft QuickBASIC 0‘4.0 and higher)

hrland Turbo Pascal (V3.0 - 5.0)

Borland Turbo C (V1 .O - 2.0)
GW, COMPAQ and IBM BASIC (V2.0 and higher)

F1.3 COPYING DISTRIBUTION SOFTWARE
As soon as possible, make a working copy of your Distribution Software. You may put the working
copy on diskettes or on the PC Hard Drive. In either case, making a working copy allows you to store
your original software in a safe place as a backup.

To make a working copy of your Distribution Software, you will use the DOS COPY or DEKCOPY
function according to one of the instructions in the following two subsections.

F - 3

PDMA-32 USER GUIDE

To Copy Distribution Software To Another Diskette
Note that the source diskette is the diskette containing your Distribution Software; the target diskette
is the diskette you copy to. Before you start, be sure to have one (or more,= needed) formatted
diskettes on hand to serve as target diskettes.

First, place your Distribution Software diskette in your Pc's A Drive and log to that drive by typing
A : . Then, use one of the following instructions to copy the diskette files.

If your PC has just one diskette drive (Drive A), type COPY * . * B : (in a singlcxlrive PC,
Drive A also serves as Drive B) and follow the instructions on the screen,

If you prefer to use the Dos DISKCOPY function, instead of COPY, you will type DISKCOPY
A: A: and follow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY .COM, in your DOS files.

above) and follow the instructions on the screen.
If your PC has two diskette drives (Drive A and Drive B), type COPY * . * B : (the same as

If you prefer to use the DOS DISKCOPY function, instead of COPY, you will type DISKCOPY
A: B: and folIow instructions on the screen. This alternative is faster, but requires access to
DISKCOPY COM, in your DOS files.

To Copy Distribution Software To The PC Hard Drive
Before copying Distribution Software to a hard drive, make a directory on the hard drive to contain
the files. While the directory name is your choice, the following instructions use PDMA32

1. After making a directory named PDMA32, place your Distribution Software diskette in your PC's
A Drive and log to that drive by typing A: .

needed) to the PDMA32 directory.
2. Then, type COPY * . * path\PDMAJZ , where path is the drive designation and DOS path (if

When you finish copying your Distribution Software, store it in a safe place (away from heat,
humidty, and dust) for possibIe future use as a backup.

F1.4 GENERATING AN APPLICATION PROGRAM
In the Distribution Software, the example program for the language you are using provides most of
the information you need to start your own PDMA-32-based Application Program. The overall
procedure for a typical executable program, however, is as follows:

1. Write your Application Code using a text editor or the language environment.

2. Compile your program.

3. Link the compiled program to a Driver (from the Distribution Software) suited to the language of
your Application Code.

This procedure gives you an executable Application Program, ready to test. Repeat all three steps as
you modify/fix this program.

F - 4

APPENDIX F: PDMA-32 PCF

F1.5 THIS MANUAL
Chapter 1 of this manual is introductory material.

Chapter 2 presents information on the PDMA-32 Drivers required for the supported languages. Since
the Drivers support the full series of PDMA-32 Mode Calls, Chapter 2 also lists and briefly describes
the Mode Calls. And since the Drivers may not be perfectly suited to your particular applications,
Chapter 2 discusses the Driver Source Modules, which are the source-code files you may use for
creating new Drivers. Finally, the chapter includes instructions for creating new Drivers.

Chapter 3 presents brief instructions and examples for using the Drivers with your Application
Programs.

...

F - 5

APPENDIX F: PDMA-32 PCF

SECTION F2

DRIVER INFORMATION

F2.1 OVERVIEW
When you write a program for your own PDMA-32 application, your program is referred to herein as
the Application Code. You have a choice of writing this Code in BASIC, QuickBASIC, PASCAL, Turbo
PASCAL, C, or FORTRAN. You then compile your Application Code and link the resulting program
with a Driver . The linking process develops the AppIicution Program, which is the program giving
you software control of your hardware.

The Driver you link with your Application Code must be suited to the language used for the Code.
For example, if you write your Application Code in C, your must link it with a Driver suited to C.

The Distribution Software contains Drivers for BASIC, QuickBASIC, PASCAL, Turbo PASCAL, C, and
FORTRAN. The Distribution Software also contains the drive^ Source Modufes , which are the
Assembly Language source files provided for the purpose of allowing you to create new Drivers
customized to your particular needs.

Section 2.2 of this chapter lists and describes the Driver Source Modules, with which you may create
new Drivers. Section 2.3 lists and describes the Drivers available in the Distribution Software. Section
2.4 lists the Mode Calls supported by the Drivers. *tion 2.5 instructs you on how to make calls from
your Application Code. The final section (Section 2.6) instructs you on how to use the Driver Source
Modules to create new Drivers.

F2.2 DRIVER SOURCE MODULES
The following two Driver Source Modules are the essential building blocks for creating a PDMA-32
Driver in any language:

PDMA32.ASM Core of the driver.

P32IFC.ASM Driver interface module for PASCAL, C, FORTRAN, and QuickBASIC.

As mentioned earlier, these two modules are available in your Distribution Software.

For instructions on using these modules to create Drivers, refer to Section 2.6.

F2.3 DRIVERS
As a convenience, your Distribution Software contains Drivers for PASCAL, Turbo PASCAL, C,
FORTRAN, BASIC, and QuickBASIC. You must link the appropriate Driver with your Application

F - 7

PDMA-32 USER GUIDE

Code; choose the Driver that matches the language used for your Application Code. Available
Drivers are as follows:

P32PCF.LIB:

PDMA32.BN. Driver for BASIC(A).

P32QB45.QLB

P32QB45.LIB:

Driver for Pascal, C, FORTRAN, and stand-alone QuickBASIC programs.

Driver for the QuickBASIC Integrated Development Environment (Ver.
4.0-4.5).

Driver for the QuickBASIC Integrated Development Environment (Ver.
4.04.5) stand-alone programs.

Driver for the QuickBASIC Extended Environment (Ver. 7.0).

Driver for the QuickBASIC Extended Environment (Ver. 7.0) stand-alone
programs.

P32QBX.QLB:

P32QBX.LIB:

TPPDMA32.OBJ: Driver for TURBO Pascal.

F2.4 MODE CALLS
This list briefly describes the Mode Calls supported by the PDMA-32 driver software. More detailed
explanations of each Mode are available in the main text of the PDMA-32 User Guide.

MODE 0
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9

MODE 10
MODE 11
MODE 12

Initialize Driver and Test Hardware.
Setup and Perform DMA Transfer.
Return Status of DMA Transfer.
Set Timer Rate.

Digital Input.
Auxiliary Output.
Set-up and Enable Interrupt.
Disable Interrupt.
Allocate Memory for DMA.
Deallocate Memory Segment.
Move Data from Source to Destination.
Disable DMA.

Digital Output.

Refer to the PDMA-32 User Guide for details of each Mode. It is essential that you perform a channel
initialization (MODE 15) on each channel separately before selecting any other Mode (0-14).

F2.5 CALLING THE DRIVER
In your Application Code, you write a call the PDMA-32 driver through a single label that
corresponds to the language used for your Code and to the memory model used for compiling. These
labels are the Cull Labels . PDMA-32 Call Labels and their corresponding Drivers are as follows:

F - 8

APPENDIX F: PDMA-32 PCF

P32PCF.LIB:

mscs-pdma32
mscm-pdma32
mscl~dma32
tcs-@ma32
t m ~ d m a 3 2
tcl-pdma32

msp-pdma32
msf_pdma32
qbpdma32

For Calk from Microsoft C, Small Model
For CalIs from Microsoft C, Medium Model
For Calk from Microsoft C, Large Model
For Calls from TLJRBO C, Small Model
For Calk from TURE30 C, Medium Model
For Calls from TURBO C, Large Model

For Calls from Microsoft Pascal
For Calls from Microsoft FORTRAN
For Calls from Microsoft QuickBASIC

TPPDMA.OBJ:
tp-pdma32 For Calls from TURBO Pascal

PDMA.BIN:
pdma32 For Calls from BASIC(A)

Regardless of the language/model you are using, with each call to a label you must specify three
input parameters, as follows:

MODE A 16-bit integer containing the number of the mode to be executed by
the PDMA-32 driver.

PARAM An array of 16-bit integers containing a variable number of mode-
dependent arguments required for the successful execution of the
mode.

FLAG A ldbit integer quantity that contains a number representing any
error code reported by the PDMA-32 driver. (See Chapter 4 for
error-code definitions.)

The following is code fragment (in C) on how to declare and use the call parameters.

in t Mode ;
ink Flag;
int Params[9];

M o d e = 0;
Flag = 0;
Params[O] = 0x300; /* Card Base Address */
Params[l] = 1; /* Selected DMA Level */
Params[2] = 7; /* Selected Interrupt Level */
mscl_pdma32 (&Mode, Params, &Flag) ;
if (Flag != 0)

printf (Ir**** Error %d detected in mode O", Flag);

F - 9

PDMA-32 USER GUIDE

Refer to Chapter 3 for additional details on how to declare and use these variables in other languages.

F2.6 CREATING NEW DRIVERS

General
While the Drivers available to you in the Distribution Software (see Section 2.3) support all the CaIl
Modes described in Section 2.4, they may not suit your particular application. You may remedy this
problem by creating a new version of the desired Driver. This section provides the information
necessary to create a new Driver for BASIC, QuickBASIC, PASCAL, Turbo PASCAL, C, and
FORTRAN.

Note that to create a new version of a Driver, your working directoTy (generalIy, the directory
containing the Distribution Software) must contain the Driver Source ModuIes (Section 2.2) and the
following development tools:

MASM.EXE Microsoft Assembler

LINKEXE Microsoft Linker

LIB.EXE Microsoft Librarian

Other utilities will be specified as needed in the instructions of the subsections that follow.

Also, note that in the MASM compile commands you use to create a new Driver, you must define the
two symbols BIN and MSTEP . These definitions use the /D option for BASIC, QuickBASIC,
PASCAL, C, and FORTRAN. For Turbo PASCAL, only the symbol DTURBOPAS requires definition.
These symbol definitions are as follows:

BIN = 1:

BIN = 0:

Compile for BASIC(A) Driver. Usage example: /DBIN=l .

Compile for non-BASIC(A) Driver (PASCAL, C, FORT", and
QuickBASIC). Usage example: /DBIN=O .

WARNING
The manufacturer does not provide technical support for user
modications of the driver source code.

The PDMA32.BIN Driver For BASIC(A)
To create a PDMA3Z.BIN Driver, you must have access to the following utilities:

EXE2BIN.EXE A Microsoft .EXE-to-.COM file conversion utility (generally available in
DOS files).

A .COM-to-.BIN file-conversion utility (supplied in the PDMA-32
Distribution Software).

MAKEBIN.EXE

F - 10

APPENDIX F: PDMA-32 PCF

Then, use the following commands:

MASM /DBIN=l /DTVRBOPAS=O PDMA32.ASM;
MASM /DBIN=l /DQBASIC=O P32IFC.ASM;
LINK P32IFC+PDMA32, PDMA32, , ;
EXE2BIN PDMA32.EXE PDMA32.COM
MAKEBIN PDMA32.COM

NOTE: If needed, use the batch file MAKEBAS.BAT (in the Distribution Software) to build this
file.

All five steps must be successful. Note that the linking operation generates the warning:

LINK : Warning L a 2 1 : no stack segment

Disregard this warning; it is irreIevent.

The TPPDMA32.0BJ Driver For Turbo PASCAL
To create a lTPDMA32,OBJ Driver, you must have access to the following utility:

TASM.EXE TURBO Assembler

Then, use the command

TASM /DBIN=O /DTUF!BOPAS=l PDIW32.ASM TPPDMA32.OBJ

NOTE: If needed, use the batch file MAKETP.BAT (in the Distribution Software) to build this
file.

The P32QB45.QLB Driver f o r The QuickBASIC Integrated Environment (V4.5)
Make the interface for QuickBASIC Integrated Environment (up to Ver 4.5) using the Quick Library
file P32QB45.QLB. Specify this file on the command line with the load, /L switch. For example, QB
/L P32QB45.QLB.

To create the P32QB45.QLB file you must have access to the utility BQLB45.LIB , which is the
QuickBASIC Integrated Environment Library. Use the following entries:

MASM /DBIN=O /DTURBOPAS=O PDMA32.ASM:
MASM /DBIN=O /DQBhSIC=l P32IFC.ASW;
LINK /q PDMA32tP32IFC,P32QB45,,BQLB45;

The P32QB45.Ll8 Driver For A Stand-alone Quick8ASlC (V4.5) Program
To create the P32Ql345.LIB file, you must have access to MASM (the Microsoft Assembler) and
WEEXE (the Microsft Library Manager). Then, use the following commands:

F - 1 1

PDMA-32 USER GUIDE

MASM /DBIN=O /DTURBOPAS=O PDMA32.ASM;
MASM /DBIN=O /DQBASIC=l P32IFC.ASM;
LIB P32QB45-+PDMA32;
LIB P32QB45-+P32IFC;

NOTE If needed, use the batch file MAKEQB4.BAT (in the Distribution Software) to build this
file.

The P32QBX.QLB Driver For The QuickBASIC Extended Environment (V7.0)
To create a QLB library compatibIe with QuickBASIC Version 7.0, follow the procedure described for
QuickBASIC Version 4.5. However, link with QBXQLBLIB , instead of BQLB45.LIBI as follows:

LINK /q PDM?L~~+P~~IFC,P~~QBX,,QBXQLB;

Note that the output file (from the linker) is renamed P32QBX.QLB to avoid incompatibilities with
QuickBASIC 4.5.

The P32QBX.LIB Driver For A Stand-alone Quick8ASIC (V7.0) Program
To create the P32QBX.LIB file, you must have access to MASM and U€?.EXE . Use the following
entries:

MASM /DBIN=O /DTURBOPAS=O PDMA32.ASW;
MASM /DBIN=O /DQBnSIC=l P32IPC.ASM;
LIB P32QBX-+PDMA32;
LIB P32QBX-+P32IFC;

NOTE: If needed, use the batch file MAKEQBX.BAT (In the Distribution Software) to build this
file.

The P32PCF.LIB Driver For PASCAL, C, & FORTRAN
When your Application Code is in PASCAL, C, or FORTRAN, use the P32PCF.LIB Driver to compile
your Application Program.

To create the P32PCF.LIB file, you must have access to MASM (the Microsoft Assembler) and
LIB.EXE (the Microsfi Library Manager). Use the following commands:

MASM /DBIN=O /DTURBOPAS=O PDMA32;
MASM /DBIN=O /DQBASIC=O P32IFC;
LIB P32PCF-+PDMA32;
LIB P32PCJ?-+P32IFC;

NOTE: If needed, use the batch file MAKEPCF.BAT (in the Distribution Software) to buiId this
file.

...
F-12

APPENDIX F: PDMA-32 PCF

SECTION F3

DRIVER USAGE

F3.1 OVERVIEW
Although your PDMA-32 drivers perform similarly for all supported languages, there are differences
from language-to-language in how they pass parameters and parameter values. Items causing
confusion are as follows:

Memory allocation for DMA buffers. . Separating a FAR (32-bit) pointer into its Segment and Offset values (two %bit values).

This chapter discusses these items and any others of concern in the separate treatment of each
supported language. Refer to the appropriate section below for details on performing the Mode Calls
from the language you are using. The language sections contain brief code fragments for illustration.
More information is also available in the example programs (Distribution Software).

F3.2 MICROSOFT ClTURBO C
The C Language, with its large run-time libraries and full pointer-manipulation support, provides the
most flexible environment for writing Application Code that fully utilizes your PDMA-32 product.

Function Prototypes
In your Application Code, declare one of the following function prototypes, depending on the
Memory Model you will use:

mscs_pdma32(int *, unsigned long int *); /* MS C Small Model * /
mscm_pdma32 (int unsigned long int *) ; /* MS C Medium M o d e l */
mscl_pdma32 (int *, unsigned *, long *, int *) ; /* Ms C L a r g e Model */
tcagdma32(int unsigned *, long *, int *); /* Turbo C Small Model */
t~n-32 (int unsigned *, long *, int *) ; /* Turbo C Medium Model*/
tcl_pQM32(int *, unsigned *, long *, int *); /* Turbo C Large Model */

You have the option of preceding these function prototypes with the C keyword extern . Note that
each prototype contains a Call Label that corresponds to the Memory Model to be used during
compilation.

F - 13

PDMA-32 USER GUIDE

The Call Parameters
Declare the Mode Call parameters as follows:

int Mode;
unsigned Params [9] ;
i n t Flag;

The Param[1 array index values are 0 thru 8, inclusive.

An Example
To call MODE 0 of the PDMA-32 Driver from an MS C Medium Model program, your commands
would be

hlode=o ;
Flag=O;
Params [O]=OX300; / * BaARD ADDRESS */
Params [1]=5; / * DMA LEVEL */
Params [2j=7; / * INTERRUPT LEVEL */
Params [33=1; / * WORD MODE */

mscmgdma32 (&Mode, ParamS, &Flag) ;
if (Flag ! = O)

I

1

printf ("Mode %d E r r o r Flag = hd\n", Mode, Flag) ;
exit (1);

Note that specifying Parums in the Call statment is the same as &Params[Ol.

Linking To The Driver
After compiling your C Application Code, link it to the PDMAPCFLIB Driver (for Call Label
mscmgdrna) as follows:

LINK your-program,,,P32PCP.LIB;

If no error reports occur, you will obtain your Application Program your-program.EXE , ready to test.
If the Linker reports errors such as Unresolved External(s), determine whether you linked to
P32PCF.LIB correctly.

NOTE: Be sure to use the correct Call Label for the Memory Model you are using.

DMA Memory Buffer Allocation
MODE 1 requires memory buffer represented by a special DMA buffer address in form of one ldbit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 9 (for detaiI, refer to the PDMA-32 User Guide).

F - 14

APPENDIX F: PDMA-32 PCF

Far Pointer Manipulation
MODE 1 allows FAR pointers to be passed in the user Param[1 integer array. The !%pent and Offset
of all FAR pointers(32 bits) in C may be retrieved using C macro: FF_OFF and FP-SEG. Refer to your
C Run-time library manual for more detail.

For example,

i n t Mo&;
i n t Flag;
i n t Params [lo] ;
i n t far* Buffer;

Mode = 1;
Flag = 0;
Params111 =5000;
Paramst21 =O;
Params[3] =O;
Params141 =O;
Params151 =l;
Params161 =FP-SEG(Buffer) ;
Params 171 =FP-OFF (Buffer) ;

mscm_pdma32 (Mode, Params,Flag) ;
if(resu1t = 0)

Rep0 r t E r ror ;
Return:

F3.3 MICROSOFT PASCAL

The Software Driver Mode Call Labels
In your program, declare the following function prototype:

FUNCTION MSPAPDMA32(VAR Hode:integer:VAR Params:PArray;VAR F1ag:integer):integer; external;

The Call Parameters
Declare the mode call parameters as folIows:

TYPE
PArray = array [l.. 91 of word ;

VAR
Params : PArray; (* MODE PARAM ARRAY *)
Mode, Flag : integer; (* MODE CALL VARIABLES *)
Result : integer; (* MODE CALL RETURN VALTJE *)

The Params[] array index values are 1 thru 9, inclusive. Note that if PArray TYPE is declare as [0..9],
the index value starts at 0.

F - 15

PDMA-32 USER GUIDE

Example
To call MODE 0 of the PDMA-32 driver from MS Pascal program,

Mode := 0;
P a r a m s [l] := 768; (* BOARD ADDRESS *)
Params[2] := 5; (* DMA LEVEL *)
Params[3] := 7; (* INTERRUPT LEVEL *)
Params[4] := 1; (* WORD MODE *)

Result := MsP-PDMA32 (Mode, Params, Flag);
if (Result <> 0) then ReportError;

where ReportError is a previously declared procedure that displays an error message and terminates
the program. Refer to the Microsoft PASCAL example program (in the Distribution Software) for
more detail.

Linking To The Driver/lnterface Module
Once you have written your MS Pascal program, you must compile and UNK it to the Interface
Module, P3ZPCF.L.B . P32PCF.LIB is where the label MSP-PDMA3Z label resides.

For example,

PL your-program ;
LINK your-program ,,,P32PCF.LIB;

If no errors occur, you have the executable file your-program.EXE that is ready to test. If the linker
reports errors such as Unresolved External(s), you must determine whether you linked to P32PCF.LIB
correctly.

DMA Memory Buffer Allocation
MODE 1 requires memory buffer represented by a special DMA buffer address in form of two &bit
address, the Segment and Offset Adresses. This special DMA address is available by calling MODE 9
(for detail, refer to the DAS-16 User Guide).

Far Pointer Manipulation
MODE 1 alIows FAR pointers to be passed in the user Params[l integer array. The Segment and Offset
of all FAR pointers (32 bits) in MS PASCAL may be retrieved using the built-in operator ADS and the
.S and .R sub-operators. Refer to your MS Pascal Run-time library manual for more detail.

F - 16

APPENDIX F: PDMA-32 PCF

For example,

Type

var
D A r r a y = array 11. .5000] of integer;

Buffer : DArray;

M o d e := 1;
Flag := 0;
Params [l] :=5000;
Params121 : = O ;
Params[3] : = O ;
Params[4] :=O;
Params[5] :=l;
Params[6] :=ORD((ADS Buffer) .S);
Params[7] :=ORD((ADS Buffer) .R);

Result := msp_pdma32 (Mode, Params , Flag) ;
i f (r e s u l t <> 0) then
Begin

ReportError;
Return;

End;

F3.4 BORLAND TURBO PASCAL

The Call Label
The Call Label TP-PDMA32 is usable from any Turbo Pascal program; declare this label in your
Application Code as follows:

FUNCTION TP_PDMA32(VAR Mode:integer;VAR Params:PArray;VAR F1ag:integer):integer; external;

The Cali Parameters
Declare the Mode CalI parameters as follows:

TYPE

VAR
P A r r a y = array [I- -91 of word;

Param : PArray; (* MODE PARAM ARRAY *)
Mode, Flag : integer; (* MODE CALL VARIABLES *)
Result : integer; (* MODE CALL RETURN VALUE *)

The Param[] array index values are 10 thru 9, inclusive. The index values start at 0.

F - 17

PDMA-32 USER GUIDE

An Example:
To call Mode 0 of the PDMA-32 Driver from Turbo Pascal Application Code:

Mode := 0;
~arams[l] := 768;
~arams[2] := 5;
Params[3] := 7;
Params[4] := I;

(* BOARD NUMBER 0 *)

(f INTERRUPT LEVEL *)
(f WORD MODE *)

(* DMA LEVEL *)

Result := TP PDMA32 (Mode, Params, Flag);
if (Result <F 0) then ReportError;

Where ReportError is previously declared procedure that dispIays an error message and terminates
the program. Refer to the Turbo Pascal example program provided for more detail.

Linking To The Driver
The Turbo Pascal Driver is TPPDMA32.OBI. This file is linked into your program using the $L
Compiler Directive. Include this command at the beginning of your progam as foIlows:

{$L TURBOPAS}

Once included, you are ready to compile your program with the command

TPC your-program

DMA Memory Buffer Allocation
MODE 1 requires memory buffer represented by a special DMA buffer address in form of one labit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 9 (for detail, refer to the PDMA-32 User Guide).

Far Pointer Man! pu lation
MODE I allows FAR pointers to be passed in the user Param[] integer array. The Segment and Offset
of all FAR pointers (32 bits) in Turbo Pascal may be retrieved using built-in function Ofs and Seg
Refer to your Turbo Pascal Run-time library manual for more detail.

For example,

TYPe

par

PArray = array [l. .9] of integer ;
DArray = array [l. .5000] of integer;

Params : PArray ;
Buffer : DArray;
Mode, Flag : integer;

F - 18

APPENDIX F: PDMA-32 PCF

Mode := 1 ;
Flag := 0 ;
Param[l] :=5000;
~aram[Sj : = O ;
Paramlf] : = O ;
ParamE41 : = O ;
Faram[5] :=l;
Param[C] :=SEG(Buffer) ;
Param[7] :=OFS(Buffer) ;
Result : = tp_pdma32 (Mode,Param, Flag) ;

F3.5 MICROSOFT FORTRAN

The Software Driver Call Label
The call label msfjdma32 is usable from any MS FORTRAN Application Code; no prototype
declaration of the label is required.

The Mode Call Parameters
Declare the Mode Call parameters as follows:

integer*2 i (15)
integer*2 mode
integer*2 f l a g

!Parameter Array
!Mode number
!Return error flag

Note that by default, FORTRAN array index values begin at 1. The latest versions of FORTRAN,
however, allow you override this default to start at Index Value 0. Refer to your FORTRAN Manuals
for more detail.

An Example
To call MODE 0 of the Driver from Microsoft FORTRAN AppIication Code,

mode=O
i(1)=768
i(2)=5
i(3)=7
i(4)=l

! Board Address
! DMA Level
! Interrupt Level
! Word Mode

call msfgdma32(mode, i (l) , Flag)
if (flag .NE. 0) then

endif
print *,'Mode = ',mde,' Error # ',flag

Linking To The Driver
After compiling your FORTRAN Application Code, link it to the P32PCF.LIB Driver (for the Call
Label msfjdma 1 as follows:

LINK your-program, , , P32PCF. LIB;

F-19

PDMA-32 USER GUIDE

If no error reports occur, you will obtain your Application Program your-program.EXE, ready to test.
If the Linker reports errors such as Unresolved External(s1, determine whether you linked to
P3ZPCF.LIB correctly.

DMA Memory Buffer Allocation
MODE 1 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 9 (for detail, refer to the PDMA-32 User Guide).

Far Pointer Manipulation
MODE 1 alIows FAR pointers to be passed in the user ParamO integer array. The Segment and Offset
of all FAR pointers that are to represent a memory buffer in FORTRAN may be retrieved using the
FORTRAN intrinsic function LOCFARO and some simple calculation. Refer to your FORTRAN Run-
time library manual and our FORTRAN example programs for more detail.

For example,

integer*2 Buffer(50OO) ,params (16)
integer*2 mode, flag
integer*2 Buffer-off , Buffer-seg
integer*4 Buffer-addr

C Get segment and offset address of DMA Buffer
Buff er-addr=LOCFAR (Buffer (1))
Buffer-seg=Buffer-addr/#lOOOO
Buffer-off=Buffer-ad-(Buffer-seg*#lOOOO)

mode=2
flag=O
params(l)=5000
params (2) =O
params (3) =O
params (4) =O
params (5) =1
params (6) =Buffer-seg
params (7) =Buffer-of f
call msf-32 (mode, params (1) , flag)

F3.6 MICROSOFT QUICKBASIC

The Call Label
You must declare the Call Label in your Application Code. Make this declaration by inserting the
following command at the beginning of your Code:

DECLARE S W QBPD-2 (MD%, BYVAL PARAMS%, FLAG%)

F - 20

APPENDIX F: PDMA-32 PCF

Note that all subroutine DECLARES in your program MUST be made before any $DYNAMIC arrays
are allocated. $DYNAMIC data is data that is allocated space in the FAR heap, outside the default
data segment. All arrays used for data acquisition must be declared as $DYNAMIC; QuickBasic
assumes $STATIC data (Default data segment) unless otherwise specified.

The Call Parameters
Declare the Mode Call parameter array D%(15) as follows:

DIM D% (9)
CObMON SHARED D% ()

The term COMMON SHARED allows the use other modules and subroutines in this array.

An Example
To initialize your PDMA-32 board, use MODE 0 as follows:

180 I&% = 0
190 FLAG3 = 0 declare error variable
200 D%(O) = hH300 'Card BASE ADDRESS
210 D%(l) = 5 'DMA LEVEL
220 D % (2) = 7 'INTERRUPT m L
230 D%(3) = 1 'WORD MODE
2 4 0 CALL QBPDMA32 (MD%, VARPTR(D% (0)), FLAG%)

' i n i t i a l i z e mode

2 5 0 I F FLAG% <> 0 THEN PRINT "MODE 0 Error # "; FLAG% : STOP

Linking To The Driver
The QuickBASIC interface consists three separate Drivers:

P32QB45.QLB Use when you load the QuickBASIC Enviroment Version 4.5 and you
plan to run your program from within the Environment (no EXE
envolved here). Use the /L switch to load this Quick Library into
QuickBASIC:

P32QBX.QLB

P32QB45.LIB

QB /L P32QB45 your-program

This is identical to P32Ql345.QLB except that it is designed €or
QuickBASIC Extended Environment Version 7.0 (QBW. Use the /L
switch to load this Quick Library into QuickBASIC

QBX /L P32QBX your-program

Use when you want to make a stand-alone EXE program from your
QuickBASIC (4.5) source. To create such a program, use BC and L I N K ,
the QuickBASIC compiler and linker as follows:

BC your-program /o;
LINK your-program,,,P32QB45.LIB

F - 21

PDMA-32 USER GUIDE

l’3ZQBX.LIB Use when you want to make a stand-alone EXE program from your
QuickBASIC (7.0) source. To create such a program, use BC and LINK,
the QuickBASIC compiler and linker as follows:

BC your-program /o;
L I m your-program,,,P32QBX.LIB

NOTE All $DYNAMIC data declaration must occur after all COMMON and DECLARE
statements in your program. If you get the QB error, COMMON and DECLARE must
precede all executable statements; double check the order of all DECLARE, COMMON,
and $DYNAMIC declarations.

DMA Memory Buffer Allocation
MODE 1 requires memory buffer represented by a special DMA buffer address in form of one 16-bit
value (the segment; to complete the address, the Driver assumes an Offset of 0). This special DMA
address is available by calling MODE 9 (for detail, refer to the PDMA-32 User Guide).

Far Pointer Manipulation
QuickBASIC provides the built-in functions VARFTR and VARSEG for obtaining the Offset and
Segment of a given variable. If the variable is declared in the $STATIC area (by default), VARSEG
returns the default data segment. If the variable is declared as $DYNAMIC, then it is placed in the
FAR heap and VARSEG for such a variable returns a unique Segment value outside the default data
segment.

For example,

DIM BUFFER% (1000) Data array used by MODE 9

MD% = 2
PARAM%(O) = 1000
PARAM%(l) = 0
PARAM%(Z) = 0
PARAM%(3) = 0
PARAMB(4) = 1
PARAM% (5) = VARSEG(BUFFER% (0))
PARAM% (6) = VARPTR (BUFFER% (0))

CALL QBPDMA32 (MD%, VARPTR(PARAM% (0)) , FLAG%) ‘make transfer
IF FLAG% <> 0 THEN PRINT “ M o d e 1 error # “; FLAG%: STOP

...

F - 22

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other
trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
1-888-KEITHLEY (534-8453) • www.keithley.com

Sales Offices: BELGIUM: Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 00 40 • Fax: 02/363 00 64
CHINA: Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
FINLAND: Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 75 08 10 • Fax: 09-25 10 51 00
FRANCE: 3, allée des Garays • 91127 Palaiseau Cédex • 01-64 53 20 20 • Fax: 01-60 11 77 26
GERMANY: Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
GREAT BRITAIN: Unit 2 Commerce Park, Brunel Road • Theale • Berkshire RG7 4AB • 0118 929 7500 • Fax: 0118 929 7519
INDIA: Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 • Fax: 91-80-509-1322
ITALY: Viale San Gimignano, 38 • 20146 Milano • 02-48 39 16 01 • Fax: 02-48 30 22 74
JAPAN: New Pier Takeshiba North Tower 13F • 11-1, Kaigan 1-chome • Minato-ku, Tokyo 105-0022 • 81-3-5733-7555 • Fax: 81-3-5733-7556
KOREA: 2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-888 • 82-2-574-7778 • Fax: 82-2-574-7838
NETHERLANDS: Postbus 559 • 4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
SWEDEN: c/o Regus Business Centre • Frosundaviks Allé 15, 4tr • 169 70 Solna • 08-509 04 679 • Fax: 08-655 26 10
SWITZERLAND: Kriesbachstrasse 4 • 8600 Dübendorf • 01-821 94 44 • Fax: 01-820 30 81
TAIWAN: 1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

© Copyright 2001 Keithley Instruments, Inc.
Printed in the U.S.A.

4/02

	ISA Homepage
	PDMA-32 Parallel Digital Interface Board User Guide
	Safety Precautions
	Table Of Contents
	Chapter 1 Introduction
	1.1 General Description
	1.2 Features
	1.3 Typical Applications
	1.4 Accessories

	Chapter 2 Installation
	2.1 Unpacking & Inspecting
	2.2 Backing UpThe Distribution Software
	2.3 Base Address Switch
	2.4 I/O Connector
	2.5 Board Installation

	Chapter 3 Register Structures
	3.1 I/O Map
	3.2 Ports A & B
	3.3 DMA Control Register
	3.4 Interrupt Control Register
	3.5 8254 Timer
	3.6 Interrupt Level Register
	3.7 DMA Level Select Register
	3.8 Interrupt Status Register

	Chapter 4 Programming For The Call Modes In BASICA & QuickBASIC
	4.1 The PDMA-32 Call Modes
	4.2 Programming In BASICA
	4.3 Programming In QuickBASIC

	Chapter 5 The Mode Calls
	5.1 Overview
	5.2 Mode 0: Initialize The PDMA-32 Driver & Check Hardware
	5.3 Mode 1: Set Up & Perform DMA Transfer
	5.4 Mode 2: Return Status
	5.5 Mode 3: Set Timer Rate
	5.6 Mode 4: Digital Output
	5.7 Mode 5: Digital Input
	5.8 Mode 6: Auxiliary Output
	5.9 Mode 7: Setup & Interrupt Enable
	5.10 Mode 8: Disable Interrupt
	5.11 Mode 9: Allocate Memory For DMA
	5.12 Mode 10: Deallocate Memory Segment
	5.13 Mode 11: Move Data From Source To Destination
	5.14 Mode 12: Disable DMA

	Chapter 6 Programmable Interval Timer
	6.1 The 8254 Programmable Interval Timer
	6.2 Reading & Loading The Counters

	Chapter 7 Applications
	7.1 Typical Handshake Connection
	7.2 Waveform Generation With A D/A Converter
	7.3 High Speed A/D Conversion
	7.4 Combined A/D & D/A Conversion Using Directional Controls
	7.5 Commonly Encountered Problems

	Chapter 8 Maintenance & Repair
	8.1 Service & Repair
	8.2 Performing Your Own Repairs

	Appendix A Specifications
	Appendix B Summary Of Error Codes
	Appendix C Understanding DMA
	C.1 What Is DMA?
	C.2 The Mechanics Of A DMA Transfer
	C.3 DMA Structure Of The PC/AT
	C.4 The 8237 DMA Controller
	C.5 The DMA Page Registers
	C.6 Setting Up A DMA Transfer
	C.7 DMA Transfer Timing
	C.8 Using Interrupts With DMA
	C.9 Determining Status Of A DMA Transfer

	Appendix D Modes 9 & 10: Allocate/Deallocate DMA Buffers
	D.1 Overview
	D.2 Language Specific Solutions & Examples
	D.3 Microsoft QuickBASIC*
	D.4 Microsoft Quick C or Borland TURBO C
	D.5 TURBO PASCAL
	D.6 Microsoft PASCAL
	D.7 Microsoft FORTRAN

	Appendix E Storage Of Integer Variables
	Appendix F PDMA-32 PCF
	F.1 Introduction
	F.2 Driver Information
	F.3 Driver Usage

	ISA Quick Start Guide
	Using TTL-Compatible Digital I/O

	w/o:
	ToC:
	TOC:

